Announcements

• Your first reading assignment is posted on the course web page under “Schedule”

• There will be a small quiz about the reading assignment at the beginning of next lecture
Projects

• In 2-3 weeks, you will decide on your project team and project topic.

• Deliverables for Phase 1:
 - Names of team members
 - Project topic
 - Description of the problem domain and functionalities that will be provided
 - What tools will be used for the project

• Deliverables for Phase 2:
 - Project report that contains a description of the designed interface and user evaluation results, what parts of the design were good, what parts were bad?
 - A 10-15 min project presentation parallel to the contents of the report
Usability, Affordance, and Usability Principles

Visual affordances and constraints

Conceptual models

Causality and other mappings

The principle of feedback

Constraints
Daily Challenges

How many of you can use all the functionality in your

• VCR
• Digital watch
• Copy machine
• Stereo system
• Plumbing fixtures
What Is Usability?

User satisfaction

Efficiency and effectiveness (user tasks)
Importance Of Usability: Cost Of Using A Computer

Costs from a technical perspective
 • Hardware costs
 • Software costs

Costs from the user’s perspective (personware)
 • Training costs
 • Daily usage
Usability goals

- Effective to use
- Efficient to use
- Safe to use
- Have good utility
- Easy to learn
- Easy to remember how to use
Fun Examples

Leitz slide projector
• To move forward, short press
• To move backward, long press

What happens when you get frustrated?
Fun Examples

Doors

1. Plain door
2. Door with a horizontal line
3. Door with a door knob and a horizontal line
4. Door with a vertical line
5. Door with a vertical line and a horizontal line
Fun Examples

Phones

How do you
- transfer a call
- change volume
- store a number
- ...
Location of Controls

Headset Jack (p. 28)

One-Touch Auto Dial Buttons (p. 20)

Display (p. 5)

TONE Button (p. 24)

Lower Button (p. 21, 23)

AUTO Button (p. 16)

MIC (Microphone) (p. 13)

VOLUME ▲, ▼ Buttons (p. 14, 29)

MUTE (Mute) Button (p. 18, 22, 24)

SP-PHONE (Speakerphone)/HEADSET Button and Indicator (p. 13, 15, 29)

Display

(This display shows all of the possible configurations.)

During a conversation, the call duration is displayed.
(Example: 15 minutes, 30 seconds)

The unit is in the programming mode (p. 9, 16, 20).

The AUTO button was pressed while dialing or storing phone numbers for the Speed Dialer (p. 16, 19).

The LOWER button was pressed (p. 21, 23).

The ringer is set to OFF (p. 10).

The MUTE button was pressed during a conversation (p. 24).

The dial lock mode is set. To cancel the mode, see page 27.

The FLASH button was pressed while storing phone numbers.

The PAUSE button was pressed while dialing or storing phone numbers.

You pressed ↑ while dialing or storing phone numbers in the TONE mode.

You pressed ↓ while dialing or storing phone numbers in the TONE mode.

While storing a phone number in an UPPER memory location for the One-Touch Dialer, “–” will appear when you press a one-touch auto dial button (p. 20).

While storing a phone number in a LOWER memory location for the One-Touch Dialer, “+” will appear when you press a one-touch auto dial button (p. 21).

The MUTE button was pressed as a secret button while storing phone numbers (p. 18, 22).

While programming function items, such as the dialing mode, “←” will flash as a cursor.
Changing Ringer Volume

Press “Program”

Press “6”

Set volume
 • Low - Press “1”
 • Medium - Press “2”
 • High - Press “3”

Press “Program”
Important Concepts

Affordances

Visibility

Conceptual models

Mapping

Feedback

Constraints
Visual Affordances

How something looks indicates how it’s can be used

- Chair for sitting
- Table for placing things on
- Knobs for turning
- Slots for inserting things into
- Buttons for pushing

Complex things may need explaining, but simple things should not

- When simple things need pictures, labels, instructions, then design has failed
- Their usage should be obvious based upon their appearance
Visual Affordances: Computer Audio

Uses a familiar idiom and metaphor

Sliders for sliding
Buttons for pressing (Is this a button?)
Dials for turning
What's this button do?
Visual Affordances: Telephony

Is this a graphic or a control?

A button is for pressing, but what does this one do?

Visual affordances for window controls are missing!

Text is for editing, but you can’t do that here.
Visual Affordances: Multi-Media

Handles are for lifting, but these are for scrolling

From AudioRack 32, a multimedia application
Visual Constraints

Limitations on the actions possible which are perceived from an object’s appearance

Push or pull? Which side?

Push or pull? Which side?

Push or pull? Which side?
Visual Constraints: Calendar Controls
Visibility

When functionality is hidden, problems in use occur
 • Occurs when number of functions is greater than number of controls

When capabilities are visible, it does not require memory of how to use
 • Remind person how to use something
Make things visible

By looking, the user can tell the state of the device and the alternatives for action.
Simple Example

Electric plugs

What if both sides were “big” and you had to remember which side the “small” one went into?
Simple Example

Bathroom faucets

• Two functions
 - Hot/cold
 - Pressure
Can you figure out how to use it?

Are two functions clear and independent?
Bathroom Faucets 2

Can you figure out how to use it?

Are two functions clear and independent?
Bathroom Faucets 3

Can you figure out how to use it?

Are two functions clear and independent?
Visibility

- This is a control panel for an elevator.
- How does it work?
- Push a button for the floor you want?

- Nothing happens. Push any other button? Still nothing. What do you need to do?

It is not visible as to what to do!

From:
www.baddesigns.com
Visibility

...you need to insert your room card in the slot by the buttons to get the elevator to work!

How would you make this action more visible?

- make the card reader more obvious
- provide an auditory message, that says what to do (which language?)
- provide a big label next to the card reader that flashes when someone enters

- make relevant parts visible
- make what has to be done obvious
Visibility
Provide a good conceptual model

A conceptual model allows the user to simulate the operation of the device.

A good conceptual model allows the user to predict the effects of their actions.
Design Model

User’s Model

Designer

User

Documentation

System

System Image
Conceptual Models

People have “mental models” of how things work

Conceptual models built from:
- Affordances and constraints
- Mappings and causality
- Transfer effects
- Population stereotypes/cultural standards
- Instructions
- Interactions

Models may be wrong, particularly if the above attributes are misleading

Models allow people to mentally simulate operation of device
Conceptual Models
Conceptual Models
Designing A Good Conceptual Model

Communicate model through visual image

- Visible affordances and constraints
- Clear causality of interactions
- Consider cultural idioms, transfer effects
- Instructions augment visuals

Together all these things indicate what can be done and how to do it

Dilbert © United Feature Syndicate, Inc.
An Example Of Good Design: Scissors
Example Of A Bad Design: Digital Watches

![Diagram of a digital watch showing 12:00]
The Principle of Mapping

The relationship between two things

Natural mapping
- Physical analogies
- Cultural standards
Car speaker control
Good mappings

It is possible to determine the relationships between:

• Actions and results
• Controls and their effects
• The system state and what is visible
Mapping

Relationship between controls and their movements and the results in the world

Why is this a poor mapping of control buttons?
Mapping

Why is this a better mapping?

The control buttons are mapped better onto the sequence of actions of fast rewind, rewind, play and fast forward
Mappings
Guess Which Switch Controls The Screen?
How Do You Play The CD?
Mappings
Mappings
Mappings

From www.baddesigns.com
Mappings

The set of possible relations between objects:
- The relation between the control and what is being controlled e.g., relationship between the burners and the mimic diagrams on a stove
- Cause and effect relationships e.g., turn the car’s steering wheel right and the car goes right.

Arbitrary

24 possibilities, requires:
- visible labels
- memory

Paired

2 possibilities per side
= 4 total possibilities

Full mapping
Mappings: Drawing Tools

Only active palette items fully visible

Depressed button indicates currently mapped item

Cursor re-enforces selection of current item
The Principle of Feedback

Sending back information to the user on what has been done.

The user should receive full and continuous feedback about results of actions.
Feedback

Sending information back to the user about what has been done

Includes sound, highlighting, animation and combinations of these

• e.g. when screen button clicked on provides sound or red highlight feedback:
Causality

The thing that happens right after an action is assumed to be caused by that action

- Interpretation of “feedback”
- False causality
 - Incorrect effect
Causality

- Invisible effect
Lack Of Causality

• No apparent cause-effect relation
 • Ok does nothing!
 • Effects visible only after the “exe” button is pressed

• Awkward to find appropriate color level
Transfer Effects

People transfer their learning/expectations of similar objects to the current object:

• Positive transfer

• Negative transfer
Transfer Effects
Population Stereotypes

Populations learn idioms that work in a certain way
 - Red means danger
 - Green means safe

• But idioms vary in different cultures!
 - Driving
 North America: drive on the right side of the road
 Europe: drive on the left side of the road

• Ignoring/changing stereotypes?
 - Calculators vs. phone number pads: which should computer keypads follow?

• Difficulty of changing stereotypes
 - Qwerty keyboard: designed to prevent jamming of keyboard
 - Dvorak keyboard (’30s): probably faster and more efficient to use
Cultural Associations And Icon Design

Because a trashcan in Thailand may look like this:

A Thai user is likely to be confused by this image popular in Apple interfaces:

Sun found their email icon problematic for some American urban dwellers who are unfamiliar with rural mail boxes.
Cultural Associations

A Mac user finds a Windows system only somewhat familiar
Individual Differences: Who Do You Design For?
Individual Differences: Who Do You Design For?
Individual Differences: Who Do You Design For?

People are different

It is rarely possible to accommodate all people perfectly

Rule of thumb:
- Designing for the average is a mistake
 - May exclude half the audience

- Design should cater for 95% of audience (ie for 5th or 95th percentile)
 - But means 5% of population may be (seriously!) compromised

Examples:
- Cars and height: headroom, seat size
- Computers and visibility:
 - Font size, line thickness, alternatives to color for color blind people?
Proverbs On Individual Differences

You do NOT necessarily represent a good representative user of equipment or systems you design.

Do not expect others to think and behave as you do, or as you might like them to.

People vary in thought and behaviour just as they do physically.
Who Do You Design For And Individual Differences

Computer users:

• Novices *Walk up and use systems*
 Interface affords restricted set of tasks
 Introductory tutorials to more complex uses

• Casual *Standard idioms*
 Recognition (visual affordances) over recall
 Reference guides

• Intermediate *Advanced idioms*
 Complex controls
 Reminders and tips

• Expert *Shortcuts for power users*
 Interface affords full task customization
Why Design Is Hard

1) The number of things to control has increased dramatically

1950's – 1970's

1990's – 2000's
2) Displays are sometimes overly abstract
 - Red lights in car indicate problems vs. flames for fire
3) Feedback can be more complex, subtle, and less natural
 • Is your digital watch alarm on and set correctly?
 • Is the phone in call forwarding mode?

4) Errors increasingly serious and/or costly
 • Airplane crashes, losing days of work...
...Costly errors:

From InfoWorld, Dec ’86

• “London—

An inexperienced computer operator pressed the wrong key on a terminal in early December, causing chaos at the London Stock Exchange. The error at [the stockbrokers office] led to systems staff working through the night in an attempt to cure the problem”
Why Design Is Hard (5)

5) Marketplace pressures

- Adding functionality (complexity) now easy and cheap
 - Computers

- Adding controls/feedback expensive
 - Physical buttons on calculators, microwave ovens
 - Widgets consume screen real estate

- Design usually requires several iterations before success
 - Product pulled if not immediately successful
Why Design Is Hard (5)

6) People often consider cost and appearance over designing with Human Factors in mind
 • Bad design not always visible or obvious

www.baddesigns.com
Why Design Is Hard (6)

...Cost and appearance over Human Factors design

- e.g., the wave of cheap telephones:
 - Accidentally hangs up when button hit with chin
 - Bad audio feedback
 - Cheap pushbuttons—mis-dials common
 - Trendy designs that are uncomfortable to hold
 - Hangs up when dropped
 - Functionality that can’t be accessed (redial, mute, hold)

7) **People tend to blame themselves when errors occur**

- “I was never very good with machines”
- “I knew I should have read the manual!”
- “Look at what I did! Do I feel stupid!”

From “The Simpsons”
Human Factors In The Design Of Computers

What does this do?

- Computers are far more complex to control than most physical devices
- General purpose computer contains no natural conceptual model
- Completely up to the designer to present a good model to the user
What You Know Now

Many so-called human errors are actually errors in design
 • Don’t blame the user!

Designers help make things easier to use by providing a good conceptual model
 • Affordances
 • Constraints
 • Mapping and causality
 • Positive transfer
 • Population stereotypes and cultural associations

Design to accommodate individual differences
 • Decide on the range of users

Good design is difficult for a variety of reasons that go beyond design-related issues