Example: A mass Inside a Spherical Mass

The shown sphere has a radius R and a mass M uniformly distributed over its surface. Another mass m is placed at a distance $r < R$ from the center. What will be the gravitational force that the object will feel?
Example: A mass Inside a Spherical Mass

- Divide the sphere into an inner sphere with radius r and outer shell.
- Outer shell will not exert any force.
- Inner shell will have a mass:

$$M(r) = \frac{M}{\frac{4}{3} \pi R^3} \frac{4}{3} \pi r^3 = M \left(\frac{r}{R} \right)^3$$

- The force exerted by the inner shell is

$$\vec{F} = -G_N M \left(\frac{r}{R} \right)^3 \frac{m}{r^2} \hat{r} = -G_N \frac{M m}{R^3} \hat{r}$$
Example: A sphere with another sphere carved out

A sphere of radius R_2 is carved out of another sphere of radius R_1. The position of the center of the carved sphere is denoted by \vec{d}. The mass density of the system is ρ. If a mass m is placed inside the cavity, what will be the force that this mass m will feel?
Example: A sphere with another sphere carved out

Let \(\vec{r}_1 (\vec{r}_2) \) be the position of the mass \(m \) relative to the center of the large (small) sphere.
Example: A sphere with another sphere carved out

Let \vec{r}_1 (\vec{r}_2) be the position of the mass m relative to the center of the large (small) sphere.

$\vec{F}_{\text{full sphere}} = \vec{F}_T + \vec{F}_{\text{carved out mass}} \quad \rightarrow \quad \vec{F}_T = \vec{F}_{\text{full sphere}} - \vec{F}_{\text{carved out mass}}$

The cavity can be modeled as a mass with mass density $-\rho$.
Example: A sphere with another sphere carved out

\[\vec{F}_{\text{full sphere}} = \vec{F}_T + \vec{F}_{\text{carved out mass}} \]
\[\vec{F}_T = \vec{F}_{\text{full sphere}} - \vec{F}_{\text{carved out mass}} \]

- The cavity can be modeled as a mass with mass density \(-\rho\).
- Large sphere:
 \[\vec{F}_L = -G_N \frac{\rho \frac{4}{3} \pi r_1^3}{r_1^2} \hat{r}_1 = -\frac{4\pi}{3} G_N \rho \hat{r}_1 \]
- Small sphere:
 \[\vec{F}_s = -\frac{4\pi}{3} G_N (-\rho) \hat{r}_2 \]

Gravitational attraction is uniform inside the cavity.

CHALLENGE: Can you prove this without using vectors? (not recommended)
Example: Circular Orbits

Let M_E (M_S) be the mass of Earth (satellite)

What is the speed of the satellite?

$$m \frac{v^2}{R} = G_N \frac{Mm}{R^2} \implies v = \sqrt{\frac{G_N M}{R}}$$

The closer the satellite is to the Earth, the faster it should be.

The period of the satellite is

$$T = \frac{2\pi R}{v} = \frac{2\pi}{\sqrt{G_N M}} R^\frac{3}{2} \implies \frac{T^2}{R^3} = \frac{2\pi}{\sqrt{G_N M}}$$

Measuring the ratio T^2/R^3, it is possible to determine the mass of the sun.
Example: Circular Orbits

Let M_E (M_s) be the mass of Earth (satellite).

What is the speed of the satellite?

$m\frac{v^2}{R} = G_N \frac{Mm}{R^2} \implies v = \sqrt{\frac{G_N M}{R}}$

The closer the satellite is to the Earth, the faster it should be.

The period of the satellite is

$$T = \frac{2\pi R}{v} = \frac{2\pi}{\sqrt{G_N M}} R^2 \implies \frac{T^2}{R^3} = \frac{2\pi}{\sqrt{G_N M}}$$

Geocentric orbits are those for which the relative position of the satellite is fixed with respect to the surface of the planet.