An Introduction to Support Vector Machines
Outline

- History of support vector machines (SVM)
- Two classes, linearly separable
 - What is a good decision boundary?
- Two classes, not linearly separable
- How to make SVM non-linear: kernel trick
- Conclusion
Pattern Analysis

Three properties:

- Computational efficiency
 - The performance of the algorithm scales to large datasets.

- Robustness
 - Insensitivity of the algorithm to noise in the training examples

- Statistical Stability
 - The detected regularities should indeed be patterns of the underlying source
The mathematical result underlying the kernel trick, Mercer’s theorem, is almost a century old (Mercer 1909). It tells us that any ‘reasonable’ kernel function corresponds to some feature space.

The underlying mathematical results that allow us to determine which kernels can be used to compute distances in feature spaces was developed by Schoenberg (1938).
History of SVM

- SVM is a classifier derived from statistical learning theory by Vapnik and Chervonenkis
- SVM was first introduced in COLT-92
- SVM becomes famous when, using pixel maps as input, it gives accuracy comparable to sophisticated neural networks with elaborated features in a handwriting recognition task
- Currently, SVM is closely related to:
 - Kernel methods, large margin classifiers, reproducing kernel Hilbert space, Gaussian process
Two Class Problem: Linear Separable Case

- Many decision boundaries can separate these two classes
- Which one should we choose?
Example of Bad Decision Boundaries
Good Decision Boundary: Margin Should Be Large

- The decision boundary should be as far away from the data of both classes as possible.
- We should maximize the margin, m

$$m = \frac{2}{\|w\|}$$

$$w^T x + b = 1$$

$$w^T x + b = -1$$

$$w^T x + b = 0$$
The Optimization Problem

- Let \(\{x_1, \ldots, x_n \} \) be our data set and let \(y_i \in \{1,-1\} \) be the class label of \(x_i \)
- The decision boundary should classify all points correctly \(\Rightarrow y_i(w^T x_i + b) \geq 1, \quad \forall i \)
- A constrained optimization problem

\[
\text{Minimize} \quad \frac{1}{2} \|w\|^2 \\
\text{subject to} \quad y_i(w^T x_i + b) \geq 1, \quad \forall i
\]
The Optimization Problem

- We can transform the problem to its dual

\[
\max W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j
\]

subject to \(\alpha_i \geq 0\), \(\sum_{i=1}^{n} \alpha_i y_i = 0\)

- This is a quadratic programming (QP) problem
 - Global maximum of \(\alpha_i\) can always be found

- \(w\) can be recovered by \(w = \sum_{i=1}^{n} \alpha_i y_i x_i\)
Characteristics of the Solution

- Many of the α_i are zero
 - w is a linear combination of a small number of data
 - Sparse representation
- x_i with non-zero α_i are called support vectors (SV)
 - The decision boundary is determined only by the SV
 - Let t_j ($j=1, \ldots, s$) be the indices of the s support vectors. We can write $w = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} x_{t_j}$
- For testing with a new data z
 - Compute $w^T z + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} (x_{t_j}^T z) + b$ and classify z as class 1 if the sum is positive, and class 2 otherwise
A Geometrical Interpretation

\[\alpha_1 = 0.8 \]

\[\alpha_2 = 0 \]

\[\alpha_3 = 0 \]

\[\alpha_4 = 0 \]

\[\alpha_5 = 0 \]

\[\alpha_6 = 1.4 \]

\[\alpha_7 = 0 \]

\[\alpha_8 = 0.6 \]

\[\alpha_9 = 0 \]

\[\alpha_{10} = 0 \]

\[w^T x + b = 1 \]

\[w^T x + b = 0 \]

\[w^T x + b = -1 \]
Some Notes

- There are theoretical upper bounds on the error on unseen data for SVM
 - The larger the margin, the smaller the bound
 - The smaller the number of SV, the smaller the bound
- Note that in both training and testing, the data are referenced only as inner product, $x^T y$
 - This is important for generalizing to the non-linear case
How About Not Linearly Separable

- We allow “error” ξ_i in classification
Soft Margin Hyperplane

- Define $\xi_i = 0$ if there is no error for x_i
 - ξ_i are just “slack variables” in optimization theory

\[
\begin{cases}
 w^T x_i + b \geq 1 - \xi_i & y_i = 1 \\
 w^T x_i + b \leq -1 + \xi_i & y_i = -1 \\
 \xi_i \geq 0 & \forall i
\end{cases}
\]

- We want to minimize $\frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i$
 - C: tradeoff parameter between error and margin

The optimization problem becomes

Minimize $\frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i$

subject to $y_i (w^T x_i + b) \geq 1 - \xi_i$, $\xi_i \geq 0$
The Optimization Problem

- The dual of the problem is

\[
\max W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j
\]

subject to \(C \geq \alpha_i \geq 0, \sum_{i=1}^{n} \alpha_i y_i = 0 \)

- \(\mathbf{w} \) is also recovered as \(\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j} \)

- The only difference with the linear separable case is that there is an upper bound \(C \) on \(\alpha_i \)

- Once again, a QP solver can be used to find \(\alpha_i \)
Extension to Non-linear Decision Boundary

- Key idea: transform x_i to a higher dimensional space to “make life easier”
 - Input space: the space x_i are in
 - Feature space: the space of $\phi(x_i)$ after transformation

- Why transform?
 - Linear operation in the feature space is equivalent to non-linear operation in input space
 - The classification task can be “easier” with a proper transformation. Example: XOR
Extension to Non-linear Decision Boundary

- Possible problem of the transformation
 - High computation burden and hard to get a good estimate
- SVM solves these two issues simultaneously
 - Kernel tricks for efficient computation
 - Minimize $||w||^2$ can lead to a “good” classifier
Example Transformation

- Define the kernel function $K(x, y)$ as
 \[
 K(x, y) = (1 + x_1 y_1 + x_2 y_2)^2
 \]

- Consider the following transformation
 \[
 \phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}) = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)
 \]
 \[
 \phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) = (1, \sqrt{2}y_1, \sqrt{2}y_2, y_1^2, y_2^2, \sqrt{2}y_1y_2)
 \]
 \[
 \langle \phi(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}), \phi(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}) \rangle = (1 + x_1 y_1 + x_2 y_2)^2
 \]
 \[
 = K(x, y)
 \]

- The inner product can be computed by K without going through the map $\phi(.)$
Kernel Trick

- The relationship between the kernel function K and the mapping $\phi(.)$ is
 \[K(x, y) = \langle \phi(x), \phi(y) \rangle \]
 - This is known as the kernel trick
- In practice, we specify K, thereby specifying $\phi(.)$ indirectly, instead of choosing $\phi(.)$
- Intuitively, $K(x, y)$ represents our desired notion of similarity between data x and y and this is from our prior knowledge
- $K(x, y)$ needs to satisfy a technical condition (Mercer condition) in order for $\phi(.)$ to exist
Examples of Kernel Functions

- Polynomial kernel with degree d
 \[K(x, y) = (x^T y + 1)^d \]

- Radial basis function kernel with width σ
 \[K(x, y) = \exp(-\|x - y\|^2/(2\sigma^2)) \]
 - Closely related to radial basis function neural networks

- Sigmoid with parameter κ and θ
 \[K(x, y) = \tanh(\kappa x^T y + \theta) \]
 - It does not satisfy the Mercer condition on all κ and θ

- Research on different kernel functions in different applications is very active
Multi-class Classification

- SVM is basically a two-class classifier
- One can change the QP formulation to allow multi-class classification
- More commonly, the data set is divided into two parts “intelligently” in different ways and a separate SVM is trained for each way of division
- Multi-class classification is done by combining the output of all the SVM classifiers
 - Majority rule
 - Error correcting code
 - Directed acyclic graph
Software

- A list of SVM implementation can be found at http://www.kernel-machines.org/software.html
- Some implementation (such as LIBSVM) can handle multi-class classification
- SVMLight is among one of the earliest implementation of SVM
- Several Matlab toolboxes for SVM are also available
Summary: Steps for Classification

- Prepare the pattern matrix
- Select the kernel function to use
- Select the parameter of the kernel function and the value of C
 - You can use the values suggested by the SVM software, or you can set apart a validation set to determine the values of the parameter
- Execute the training algorithm and obtain the α_i
- Unseen data can be classified using the α_i and the support vectors
Strengths and Weaknesses of SVM

- **Strengths**
 - Training is relatively easy
 - No local optimal, unlike in neural networks
 - It scales relatively well to high dimensional data
 - Tradeoff between classifier complexity and error can be controlled explicitly
 - Non-traditional data like strings and trees can be used as input to SVM, instead of feature vectors

- **Weaknesses**
 - Need a "good" kernel function
Other Types of Kernel Methods

- A lesson learnt in SVM: a linear algorithm in the feature space is equivalent to a non-linear algorithm in the input space
- Classic linear algorithms can be generalized to its non-linear version by going to the feature space
 - Kernel principal component analysis, kernel independent component analysis, kernel canonical correlation analysis, kernel k-means, 1-class SVM are some examples
Conclusion

- SVM is a useful alternative to neural networks
- Two key concepts of SVM: maximize the margin and the kernel trick
- Many active research is taking place on areas related to SVM
- Many SVM implementations are available on the web for you to try on your data set!
Resources

- http://www.kernel-machines.org/
- http://www.support-vector.net/
KERNEL METHODS
ANOVA kernels were first suggested by Burges and Vapnik (1995) (under the name Gabor kernels).

- Schölkopf, Smola and Müller (1996) used kernel functions to perform principal component analysis.

- Schölkopf (1997) observed that any algorithm which can be formulated solely in terms of dot products can be made non-linear by carrying it out in feature spaces induced by Mercer kernels. Schölkopf, Smola and Müller (1997) presented their paper on kernel PCA.
Overview

Kernel Methods: New class of pattern analysis algorithms
- can operate on very general types of data
- can detect very general types of relations.

A powerful and principled way of detecting nonlinear relations using well-understood linear algorithms in an appropriate feature space.
Kernel Trick

Kernel trick: Using a *linear classifier* algorithm to solve a *non-linear problem* by mapping the original non-linear observations into a *higher-dimensional space*

- Linear classification in the new space equivalent to non-linear classification in the original space

Mercer’s theorem: Any continuous, symmetric, positive semi-definite (i.e. eigenvalues are positive) kernel function $K(x, y)$ can be expressed as a *dot product* in a high-dimensional space.
Embed Data into A Feature Space

Fig. 2.1. The function \(\phi \) embeds the data into a feature space where the nonlinear pattern now appears linear. The kernel computes inner products in the feature space directly from the inputs.
Linearly inseparable problems become linearly separable in higher dimension space

\[\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \]

\[(x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2} x_1 x_2, x_2^3) \]
Kernel function

Kernel Function: A function that returns the inner product between the images of two inputs in some feature space.

\[K(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle \]

- Choosing \(K \) is equivalent to choosing \(\Phi \) (the embedding map)
An example-Polinomial Kernel

\[x = (x_1, x_2); \]
\[z = (z_1, z_2); \]

\[
\langle x, z \rangle^2 = (x_1z_1 + x_2z_2)^2 = \\
= x_1^2z_1^2 + x_2^2z_2^2 + 2x_1z_1x_2z_2 = \\
= \langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) \rangle = \\
= \langle \phi(x), \phi(z) \rangle
\]
Common Kernel Functions

- Gaussian RBF: \(k(x, y) = \exp\left(\frac{-||x - y||^2}{c}\right) \)
- Polynomial: \(((x \cdot y) + \theta)^d \)
- Sigmoidal: \(\tanh(\kappa(x \cdot y) + \theta) \)
- inv. multiquadric: \(\frac{1}{\sqrt{||x - y||^2 + c^2}} \)
Stages in Kernel Methods

- Embed the data in a **suitable** feature space
 - Kernel functions
 - Depend on the specific data type and domain knowledge
 - Use algorithm based on linear algebra, geometry, and statistics to discover patterns in embedded data.
 - The pattern analysis component
 - General purpose and robust
Stages in Kernel Methods (cont)

- First → Create kernel matrix using kernel function
- Second → Apply pattern analysis algorithm
The kernel matrix

<table>
<thead>
<tr>
<th>K</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>(\ell)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\kappa(x_1, x_1))</td>
<td>(\kappa(x_1, x_2))</td>
<td>...</td>
<td>(\kappa(x_1, x_\ell))</td>
</tr>
<tr>
<td>2</td>
<td>(\kappa(x_2, x_1))</td>
<td>(\kappa(x_2, x_2))</td>
<td>...</td>
<td>(\kappa(x_2, x_\ell))</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(\ell)</td>
<td>(\kappa(x_\ell, x_1))</td>
<td>(\kappa(x_\ell, x_2))</td>
<td>...</td>
<td>(\kappa(x_\ell, x_\ell))</td>
</tr>
</tbody>
</table>

- Symmetric Positive Definite (positive eigenvalues)
- Contains **all necessary** information for the learning algorithm
A Universal Kernel?

- Universal kernel is not possible
 - The kernels must be chosen for the problem.
Kernel Types

- Polynomial Kernels
 - Gaussian Kernels
 - ANOVA Kernels
 - Kernels from Graphs
 - Kernels on Sets
 - Kernels on Real Numbers
 - Randomized kernels
 - Kernels for text
 - Kernels for structured data: Strings, Trees, etc.
Kernels

- Polynomial kernel
- All-subsets kernel
- Gaussian kernel
- ANOVA kernel
- Alternative recursion for ANOVA kernel
- General graph kernels
- Exponential diffusion kernel
- von Neumann diffusion kernel
- Evaluating diffusion kernels
- Evaluating randomised kernels
- Intersection kernel
- Union-complement kernel
- Agreement kernel
- Derived subsets kernel
- Kernels on real numbers
- Spline kernels
- Vector space kernel
- Latent semantic kernels
- The p-spectrum kernel
- The p-spectrum recursion
- Blended spectrum kernel
- All-subsequences kernel
- Fixed length subsequences kernel
- Naive recursion for gap-weighted subsequences kernel
- Gap-weighted subsequences kernel
- Trie-based string kernels
- ANOVA kernel
- Simple graph kernels
- All-non-contiguous subsequences kernel
- Fixed length subsequences kernel
- Gap-weighted subsequences kernel
- Character weighting string kernel
- Soft matching string kernel
- Gap number weighting string kernel
- Trie-based p-spectrum kernel
- Trie-based mismatch kernel
- Trie-based restricted gap-weighted kernel
- Co-rooted subtree kernel
- All-subtree kernel
- Fixed length HMM kernel
- Pair HMM kernel
- Hidden tree model kernel
- Fixed length Markov model Fisher kernel
Pattern Analysis Methods

Supervised Learning
- Support Vector Machines
- Kernel Fisher Discriminant

Unsupervised Learning
- Kernel PCA
- Kernel k-means
Applications

- Geostatistics
 - Analysis of mining processes through mathematical models
- Bioinformatics
 - Application of information technology to the field of molecular biology
- Cheminformatics
 - Use of computer and informational techniques in the field of chemistry.
- Text categorization
 - Assign an electronic document to one or more categories, based on its contents
- Handwriting Recognition
- Speech Recognition
REFERENCES

