Part 6: Nearest and k-nearest Neighbor Classification
Nearest Neighbor (NN) Rule & k-Nearest Neighbor (k-NN) Rule

Non-parametric classification rules:
- Linear and generalized discriminant functions
- Nearest Neighbor & k-NN rules

NN Rule

1-NN: A direct classification using learning samples
Assume we have \(M \) learning samples from all categories

\[
X^{11}, X^{12}, \ldots, X^{jk}, \ldots, \ldots \ldots
\]

Assume a distance measure between samples

\[
d(X^{ik}, X^{jl})
\]

\(X^{ik} \rightarrow d \rightarrow X^{jl} \)

\(X^{ik} \) is the \(k \)th sample from the \(i \)th category
\(X^{jl} \) is the \(l \)th sample from the \(j \)th category.
A general distance metric should obey the following rules:

\[d(X^{ij}, X^{ij}) = 0 \]
\[d(X^{ij}, X^{jl}) = d(X^{jl}, X^{ij}) \]
\[d(X, Y) \leq d(X, Z) + d(Z, Y) \]

Most standard: Euclidian Distance

\[d(X, Y) = \| X - Y \| = \left[\sum_{i=1}^{n} (x_i - y_i)^2 \right]^{1/2} = [(X - Y)^T (X - Y)]^{1/2} \]
1-NN Rule: Given an unknown sample X

$$\alpha_i \text{ if } d(X, X^{ik}) < d(X, X^{jl})$$

For $jl \neq ik$

That is, assign X to category ω_i if the closest neighbor of X is from category i.

![Diagram showing 1-NN rule with a point X and its closest neighbors.]
Example: Find the decision boundary for the problem below.

k-NN rule: instead of looking at the closest sample, we look at k nearest neighbors to X and we take a vote. The largest vote wins. k is usually taken as an odd number so that no ties occur.
• k-NN rule is shown to approach optimal classification when k becomes very large but \(\frac{k}{M} \rightarrow 0 \)

• k-I NN (NN with a reject option)
 Decide if majority is higher than a given threshold I. Otherwise reject.

If we threshold I=4 then,
For above example is rejected to be classified.
• Analysis of NN rule is possible when $M \rightarrow \infty$ and it was shown that it is no worse than twice of the minimum-error classification (in error rate).

EDITING AND CONDENSING

• NN rule becomes very attractive because of its simplicity and yet good performance.
• So, it becomes important to reduce the computational costs involved.
• Do an intelligent elimination of the samples.

• Remove samples that do not contribute to the decision boundary.
Voronoi Diagrams

- V_i is a polygon such that any point that falls in V_i is closer to S_i than any other sample S_j.

- S_i and S_j represent sample sets.
• So the **editing rule** consists of throwing away all samples that do not have a Voronoi polygon that has a common boundary belonging to a sample from other category.

NN Editing Algorithm

- Consider the Voronoi diagrams for all samples
- Find Voronoi neighbors of sample \(X' \)
- If any neighbor is from other category, keep \(X' \). Else remove from the set.
- Construct the Voronoi diagram with the remaining samples and use it for classification.
Advantage of NNR:
• No learning - no estimation
• so easy to implement

Disadvantage:
• Classification is more expensive. So people found ways to reduce the cost of NNR.

Analysis of NN and k-NN rules:
Possible when
• When $n \rightarrow \infty$, X (unknown sample) and X' (nearest neighbor) will get very close. Then,
• $P(\omega_i \mid X) \rightarrow P(\omega_i \mid X')$ that is, we are selecting the category ω_i with probability $P(\omega_i \mid X)$ (a-posteriori probability).
Error Bounds and Relation with Bayes Rule:

• Assume
 \(E^* \) - Error bound for Bayes Rule (a number between 0 and 1)
 \(E_1 \) - Error bound for 1-NN
 \(E_k \) - Error bound for k-NN

• It can be shown that
 \[
 E^* \leq E_1 \leq 2E^* (1 - E^*) \leq 2E^*
 \]
 for 2 categories and
 \[
 E^* \leq E_1 \leq 2E^* \left(1 - \frac{c}{2(c - 1)} E^* \right) \leq 2E^*
 \]
 for \(c \) categories

• Always better than twice the Bayes error rate!
Highest error occurs when $P_1(x) = P_2(x) = \ldots \ldots$ (all densities are the same) then,

$$P(\omega_i) = \frac{1}{c} \quad P(error) = 1 - \frac{1}{c} = \frac{c-1}{c}$$
Distance Measures (Metrics)

Non-negativity \(D(x, y) \geq 0 \)

Reflexivity \(D(x, y) = 0 \) when only \(x=y \)

Symmetry \(D(x, y) = D(y, x) \)

Triangle inequality \(D(x, z) + D(z, y) \geq D(x, y) \)

Euclidian distance satisfies these, but not always a meaningful measure.

Consider 2 features with different units scaling problem.

Solution: **Scaling**: Normalize the data by re-scaling (Reduce the range to 0-1)

Scale of \(X_1 \) changed to half.
Minkowski Metric
A general definition for distance measures

\[L_k(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^k \right)^{1/k} \]

\(L_1 \) norm - City block (Manhattan) distance: useful in digital problems

\(L_2 \) norm - Euclidian

So use different \(k \)'s depending of your problem.
Computational Complexity

Consider \(n \) samples in \(d \) dimensions in crude 1-nn rule, we measure the distance from \(X \) to all samples. \(O(dn^2) \) for classification. (for Bayes, \(O(d^2) \)) (\(n=\)number of samples; \(d=\)dim.)

To reduce the costs, several approaches
- **Partial Distance**: Compare the partially calculated distance to already found closest sample.
- **Search Tree** approach
- **Editing** (condensing) already discussed.

![Voronoi neighborhoods diagram]