©
ORTA DQÉU TEKNIK Üniversitesi MIDDLE EAST TECHNICAL UNIVERSITY

ME 301 Theory of Machines I

Dr. Ergin TÖNÜK

Department of Mechanical Engineering Graduate Program of Biomedical Engineering http://users.metu.edu.tr/tonuk tonukemetu.edu.tr

Kinematics of Mechanisms

a. Functional Synthesis: Determination of candidate mechanisms that can realize a set of given (or implied) functional requirements.
b. Type Determination: Investigation of known mechanisms for their topological characteristics.
c. Kinematic Analysis: Determination of kinematic characteristics (position, velocity and acceleration) of a known mechanism.
d. Kinematic Synthesis: Determination of mechanism parameters (mostly link lengths) to realize a given motion (position, velocity and/or acceleration) for a mechanism whose topological characteristics are known.

Mechanisms

Kinematic element is the part of a body used to connect it to another body permitting relative motion of two bodies.
Kinematic pair is the combination of two kinematic elements and mostly termed as joint.

- Open kinematic pair pairs and unpairs during the operation of the mechanism

Mechanisms

- Closed kinematic pair maintains contact for all possible positions of the mechanism
- In form closed kinematic pairs one element envelopes the other

- In force closed kinematic pairs an external force maintains contact of two kinematic elements

Mechanisms

Degree of a kinematic pair is number of links that come together at the kinematic pair minus one.

Degree of Freedom

Degree of Freedom of a Rigid Body in Space: It is the number of independent parameters to define the position of a rigid body in that space.
3-D Space: Three non-collinear points
9 parameters: $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1} ; \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2} ; \mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{z}_{3}$

3 equations: $\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$

$$
\begin{aligned}
& \left|P_{2} P_{3}\right|=\sqrt{\left(x_{3}-x_{2}\right)^{2}+\left(y_{3}-y_{2}\right)^{2}+\left(z_{3}-z_{2}\right)^{2}} \\
& \left|P_{3} P_{1}\right|=\sqrt{\left(x_{3}-x_{1}\right)^{2}+\left(y_{3}-y_{1}\right)^{2}+\left(z_{3}-z_{1}\right)^{2}}
\end{aligned}
$$

We may select six of the nine parameters as we like to locate the body as we like, however the distances $\left|P_{1} P_{2}\right|$, $\left|P_{2} P_{3}\right|$ and $\left|P_{3} P_{1}\right|$ are fixed once the points $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3} are selected on the rigid body.

Degree of Freedom

Degree of Freedom of a Rigid Body in Space: It is the number of independent parameters to define the position of a rigid body in that space.
2-D Space: Two points
4 parameters: $\mathrm{x}_{1}, \mathrm{y}_{1} ; \mathrm{x}_{2}, \mathrm{y}_{2}$
1 equation: $\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

We may select three of the four parameters as we like to locate the body as we like, however the distance $\left|P_{1} P_{2}\right|$ is fixed once the points P_{1} and P_{2} are selected on the rigid body.

Degree of Freedom

Degree of Freedom of a Kinematic Pair (Joint): It is the number of independent parameters to define the position of one link (rigid body) relative to the other link connected by the kinematic pair.

Since degree of freedom of a rigid body in 3-D space is 6, the body is fully free without any joint for degree of freedom 6.

Similarly the body is fully free without any joint for degree of freedom 3 for planar motion.

Degree of Freedom

Degree of Freedom of a Rigid Body in Space: It is the number of independent parameters to define the position of a rigid body in that space.
3-D Space: One point, four angles
7 parameters: $\mathrm{x}_{\mathrm{A}}, \mathrm{y}_{\mathrm{A}}, \mathrm{z}_{\mathrm{A}} ; \theta_{1}, \theta_{2}, \theta_{3} ; \phi$
1 equation: $\sqrt{\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}+\cos ^{2} \theta_{3}{ }^{2}}=1$

We may select six of the seven parameters as we like to locate the body as we like, however the angles θ_{1}, θ_{2} and θ_{3} cannot be all arbitrary.

Degree of Freedom

Degree of Freedom of a Rigid Body in Space: It is the number of independent parameters to define the position of a rigid body in that space.
2-D Space: One point, one angle
3 parameters:

- $\mathrm{x}_{\mathrm{A}}, \mathrm{y}_{\mathrm{A}} ; \phi$ (Cartesian representation of point A

- r, $\theta ; \phi$ (polar representation of point A)

In any case we may select three parameters as we like to locate the body.

TABLEI					
KINEMATTC PAIRS WITH Independent rotational and translational motion					
			NAME	$\begin{aligned} & \text { FORM } \\ & \text { CLOSED } \end{aligned}$	$\begin{aligned} & \text { FORCE } \\ & \text { CLOSED } \end{aligned}$
5	3	2	Sphere between parallel planes		

Degree of Freedom of Joints (4/6)

Degree of Freedom of Joints (5/6)

Degree of Freedom of Joints (6/6)

TABLE I					
KINEMATIC PAIRS WITH Independent rotational and translational motion					
			NAME	FORM CLOSED	FORCE CLOSED
1	1	0	Revolute pair (turning joint)	4	人
	0	1	Frismatic pair (sliding joint)		期

Degree of Freedom of Mechanisms

It is the total number of independent parameters that is required to define the position of every link (hence every point on any link) in a mechanism.

Can be determined by inspection for simple mechanisms but there is a systematic approach (the general degree of freedom equation) that works for simple and complicated systems.

Degree of Freedom of Mechanisms

Inspection: Four-bar mechanism (British call it three-bar mechanism because there are three moving bars but Germans and Americans call it four-bar because it is obtained from a four-bar kinematic chain by fixing one of the bars. We will use German-American nomenclature).
The lengths of links are known:
$\left|A_{0} A\right|=a_{2}=3 \mathrm{~cm}$
$|A B|=a_{3}=8 \mathrm{~cm}$
$\left|B_{0} B\right|=a_{4}=7 \mathrm{~cm}$
$\left|A_{0} B_{0}\right|=a_{1}=10 \mathrm{~cm}$
For a given θ_{12} location of A is fixed therefore $\left|A B_{0}\right|$ can be determined. $\triangle A B B_{0}$ is an SSS triangle that can be drawn (in two ways!). Therefore once we define θ_{12} as we like everything else is fixed. Degree of freedom of the four-bar is one.

Degree of Freedom of Mechanisms

Inspection: Four-bar mechanism, select any θ_{12} value you like and get the position of the mechanism uniquely. Say $\theta_{12}=60$

ME 301 Theory of Machines I

Degree of Freedom of Mechanisms
Inspection: Four-bar mechanism, say $\theta_{12}=170^{\circ}$

Degree of Freedom of Mechanisms
Inspection: Four-bar mechanism, say $0^{\circ} \leq \theta_{12} \leq 360^{\circ}$

Degree of Freedom of Mechanisms
Inspection: Five-bar mechanism

Degree of Freedom of Mechanisms Inspection: Five-bar mechanism

ME 301 Theory of Machines I

Degree of Freedom of Mechanisms

Systematic determination of degree of freedom:
In planar motion ℓ links with no joints has $F=3(\ell-1)$
k_{1} joints (revolute $\&$ prismatic) constrain 2 freedoms
k_{2} joints (cylinder in slot) constrain 1 freedom
$F=3(\ell-1)-2 k_{1}-k_{2}$
$F=6(\ell-1)-5 k_{1}-4 k_{2}-3 k_{3}-2 k_{4}-k_{5}$
Kutzbach formula!
Replace 3 and 6 in the above equation with λ, degree of
freedom of a rigid body in the space,
Constraints imposed by $\mathrm{i}^{\text {th }}$ joint is $\lambda-f_{i}$
Constraints imposed by all joints $\sum_{i=1}^{j}\left(\lambda-f_{i}\right)=\lambda j-\sum_{i=1}^{j} f_{i}$
Then $F=\lambda(\ell-1)-\left[\lambda j-\sum_{i=1}^{j} f_{i}\right]$
Simplification yields $F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
ME 301 Theory of Machines I

Degree of Freedom of Mechanisms

Degree of freedom of the unconstrained bodies in the mechanism space
ℓ : Number of links of the mechanism (including fixed link)
j: Number of joints of the mechanism (ternary joints!)
f_{i} : Degree of freedom of $i^{\text {th }}$ joint
F: Degree of freedom of the mechanism
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
Remember exceptions!
$F>0$ mechanism requires F actuations for kinematically deterministic motion
$F=0$ structure (immobile) unless has special dimensions
$F<0$ over-constraint (number of redundant supports is $|\mathrm{F}|$) and immobile unless has special dimensions (also forces cannot be determined unless equations of equilibrium/motion are complemented with $|F|$ number of equations relating deformations).

Degree of Freedom of Mechanisms
$\lambda=3$ (co-planar)

Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms
$\lambda=3$ (co-planar)
$\ell=6$
$j=7$

Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms
$\lambda=3$ (co-planar)
$\ell=6$
$j=7$
$\sum_{i=1}^{7} f_{i}=7(6 \mathrm{R}+\mathrm{P})$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(6-7-1)+7$
$F=1$
$F=1$

Therefore just the piston 2 in fixed cylinder through P_{12} is sufficient to control the mechanism.

Degree of Freedom of Mechanisms

Alternative method:
Two grippers are symmetric
Just consider one of them
$\lambda=3$ (co-planar)
$\ell=4$

Degree of Freedom of Mechanisms

Alternative method:
Two grippers are symmetric
Just consider one of them
$\lambda=3$ (co-planar)
$\ell=4$
$j=4$

Degree of Freedom of Mechanisms
Alternative method:
Two grippers are symmetric
Just consider one of them
$\lambda=3$ (co-planar)
$\ell=4$
$j=4$
$\sum_{i=1}^{4} f_{i}=4(3 \mathrm{R}+\mathrm{P})$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(4-4-1)+4$
$F=1$
Therefore still just the piston 2 in fixed cylinder through P_{12} is sufficient to control the mechanism.

Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms
$\lambda=3$ (co-planar)
$\ell=4$

Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms
Alternative approach:
$\lambda=3$ (co-planar)
$\ell=5$

Therefore controlling crank 2 through R_{12} is sufficient to control the quick return mechanism.

Degree of Freedom of Mechanisms

Alternative approach:
$\lambda=3$ (co-planar)
$\ell=5$
$\mathrm{j}=6$
$\sum_{i=1}^{6} f_{i}=8(2 \mathrm{CS}+3 \mathrm{R}+\mathrm{P})$

Degree of Freedom of Mechanisms

The Brakes (Approach 1):
$\lambda=3$ (co-planar)
$\ell=6$

Degree of Freedom of Mechanisms

The Brakes (Approach 1):
$\lambda=3$ (co-planar)
$\ell=6$
$\mathrm{j}=7$
$\sum_{i=1}^{7} f_{i}=7(6 \mathrm{R}+\mathrm{P})$

$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(6-7-1)+7$
$F=1$
Therefore by controlling the brake "button" 2 through P_{12} we can apply the brakes to both wheels.

Degree of Freedom of Mechanisms

The Brakes (Approach 2):
$\lambda=3$ (co-planar)
$\ell=7$
$\mathrm{j}=8$
$\sum_{i=1}^{8} f_{i}=8(7 \mathrm{R}+\mathrm{P})$

Degree of Freedom of Mechanisms

The Drive:
$\lambda=3$ (co-planar)
$\ell=5$

Degree of Freedom of Mechanisms

The Drive:
$\lambda=3$ (co-planar)
$\ell=5$
$j=6$
$\sum_{i=1}^{6} f_{i}=7\left(5 \mathrm{R}+\mathrm{GP}^{*}\right)$

Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms
Oldham Coupling:
$\lambda=3$ (co-planar)
$\ell=4$

Degree of Freedom of Mechanisms Oldham Coupling:
$\lambda=3$ (co-planar)
$\ell=4$
$j=4$
$\sum_{i=1}^{4} f_{i}=4(2 \mathrm{R}+2 \mathrm{P})$

Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms

Oldham Coupling:
$\lambda=3$ (co-planar)
$\ell=4$
$j=4$
$\sum_{i=1}^{4} f_{i}=4(2 \mathrm{R}+2 \mathrm{P})$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(4-4-1)+4$
$F=1$
Therefore by driving the crank 2 the pulley 4 can be driven.

Degree of Freedom of Mechanisms

Spatial Four Bar:
$\lambda=6(3-D)$
$\ell=4$

Degree of Freedom of Mechanisms
Spatial Four Bar:
$\lambda=6(3-D)$
$\ell=4$
$j=4$
$\sum_{i=1}^{4} f_{i}=8(2 \mathrm{R}+2 \mathrm{~S})$

$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$

Degree of Freedom of Mechanisms

Spatial Four Bar:
$\lambda=6(3-\mathrm{D})$
$\ell=4$
$\mathrm{j}=4$
$\sum_{i=1}^{4} f_{i}=8(2 \mathrm{R}+2 \mathrm{~S})$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=6(4-4-1)+8$
$F=2$
There is one uncontrolled motion which is the rotation of
link 3 (the coupler) about its own axis due to the spherical
joints S23 and S34. This is a redundant freedom and if
ignored the position of follower 4 can be controlled by the
position of crank 2 so $F_{\text {actual }}=1$.

