

ME 301 Theory of Machines I

Dr. Ergin TÖNÜK

Department of Mechanical Engineering Graduate Program of Biomedical Engineering http://wars.metu.edu.tr/tonuk conuktmetu.edu.tr

Kinematics of Mechanisms

- <u>Functional Synthesis</u>: Determination of candidate mechanisms that can realize a set of given (or implied) functional requirements.
- <u>Type Determination</u>: Investigation of known mechanisms for their topological characteristics.
- c. <u>Kinematic Analysis</u>: Determination of kinematic characteristics (position, velocity and acceleration) of a known mechanism.
- d. <u>Kinematic Synthesis</u>: Determination of mechanism parameters (mostly link lengths) to realize a given motion (position, velocity and/or acceleration) for a mechanism whose topological characteristics are known.

Mechanisms

Kinematic element is the part of a body used to connect it to another body *permitting relative motion of two bodies*. **Kinematic pair** is the combination of two kinematic <u>elements and mostly termed as joint</u>.

Open kinematic pair pairs and unpairs during the operation of the mechanism

Mechanisms Closed kinematic pair maintains contact for all possible positions of the mechanism: • In form closed kinematic pairs one element envelopes the other • In force closed kinematic pairs an external force maintains contact of two kinematic elements • In force closed kinematic pairs an external force maintains contact of two kinematic elements • In force closed kinematic pairs an external force maintains contact of two kinematic elements

Mechanisms

• **Lower kinematic pair** has contact of two kinematic elements along a surface therefore contact stresses are *lower*

 Higher kinematic pair has contact of two kinematic elements along a line or at a point therefore contact stresses are higher

Mechanisms

Degree of a kinematic pair is number of links that come together at the kinematic pair *minus one*.

Quaternary Joint (Degree: 3)

...

ME 301 Theory of Machines

ME 301 Theory of Machines

Degree of Freedom

Degree of Freedom of a Rigid Body in Space: It is the number of *independent* parameters to define the position of a rigid body in that space.

3-D Space: Three *non-collinear* points

9 parameters: x_1 , y_1 , z_1 ; x_2 , y_2 , z_2 ; x_3 , y_3 , z_3

3 equations: $|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$ $|P_2P_3| = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2 + (z_3 - z_2)^2}$

 $|P_3P_1| = \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2 + (z_3 - z_1)^2}$

We may select six of the nine parameters as we like to locate the body as we like, however the distances $|P_1P_2|$, $|P_2P_3|$ and $|P_3P_1|$ are fixed once the points P_1 , P_2 and P_3 are selected on the rigid body.

Degree of Freedom
Degree of Freedom of a Rigid Body in Space: It is the number of <i>independent</i> parameters to define the position of a rigid body in that space. <i>3-D Space:</i> One point, four angles 7 parameters: x_A , y_A , z_A ; θ_1 , θ_2 , θ_3 ; ϕ
l equation: $\sqrt{\cos^2\theta_1 + \cos^2\theta_2 + \cos^2\theta_3} = 1$ We may select six of the seven parameters as we like to locate the body as we like, however the angles θ_1 , θ_2 and θ_3 cannot be <i>all</i> arbitrary.

Degree of Freedom

Degree of Freedom of a Rigid Body in Space: It is the number of *independent* parameters to define the position of a rigid body in that space.

2-D Space: Two points

ME 301 Theory of Mach

ME 301 Theory of Machi

4 parameters: $x_1, y_1; x_2, y_2$ 1 equation: $|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

We may select three of the four parameters as we like to locate the body as we like, however the distance $|P_1P_2|$ is fixed once the points P_1 and P_2 are selected on the rigid body.

Degree of Freedom

Degree of Freedom of a Rigid Body in Space: It is the number of *independent* parameters to define the position of a rigid body in that space.

2-D Space: One point, one angle

ME 301 Theory of Machines I

3 parameters:

- x_A , y_A ; ϕ (Cartesian representation of point A)
- r, θ ; ϕ (polar representation of point A)

In any case we may select three parameters as we like to locate the body.

Degree of Freedom

Degree of Freedom of a Kinematic Pair (Joint): It is the number of *independent* parameters to define the position of one link (rigid body) relative to the other link connected by the kinematic pair.

Since degree of freedom of a rigid body in 3-D space is 6, the body is fully free without any joint for degree of freedom 6.

Similarly the body is fully free without any joint for degree of freedom 3 for planar motion.

Degree of Freedom of Joints (1/6)

Degree of Freedom of Joints (4/6)

It is the total number of *independent* parameters that is required to define the position of every link (hence every point on any link) in a mechanism.

Can be determined by inspection for simple mechanisms but there is a systematic approach (*the general degree of freedom equation*) that works for simple and complicated systems.

Degree of Freedom of Mechanisms

Inspection: Four-bar mechanism (British call it three-bar mechanism because there are three moving bars but Germans and Americans call it four-bar because it is obtained from a four-bar kinematic chain by fixing one of the bars. We will use German-American nomenclature).

The lengths of links are known:

 $\begin{aligned} |A_0A| &= a_2 = 3 \ cm \\ |AB| &= a_3 = 8 \ cm \\ |B_0B| &= a_4 = 7 \ cm \\ |A_0B_0| &= a_1 = 10 \ cm \end{aligned}$

For a given θ_{12} location of A is fixed therefore $|AB_0|$ can be determined. ΔABB_0 is an SSS triangle that can be drawn (in two ways!). Therefore once we define θ_{12} as we like everything else is fixed. Degree of freedom of the four-bar is one.

ME 301 Theory of Machines

Degree of Freedom of Mechanisms

ME 301 Theory of M

Inspection: Four-bar mechanism, for a given θ_{12} location of A is fixed therefore $|AB_0|$ can be determined. $\triangle ABB_0$ is an SSS triangle that can be drawn (in two ways!)

Degree of Freedom of Mechanisms

Inspection: Four-bar mechanism, select any θ_{12} value you like and get the position of the mechanism uniquely. Say $\theta_{12} = 60^{\circ}$

Inspection: Five-bar mechanism The lengths of links are known: $|A_0A| = a_2 = 4 \ cm$ $|AB| = a_3 = 3 cm$ $|BC| = a_3 = 8 cm$ $|C_0C| = a_4 = 7 \ cm$ $|A_0C_0| = a_1 = 10 \ cm$

For a given θ_{12} location of A is fixed. ABCC₀ forms a four-bar that requires one more angle (say θ_{13}) to be known. Therefore there are two independent parameters. The degree of freedom of five-bar is two.

ME 301 Th

of N

Degree of Freedom of Mechanisms Inspection: Five-bar mechanism 012 013 = 12' ME 301 The w of Ma

Degree of Freedom of Mechanisms

Systematic determination of degree of freedom:

In planar motion ℓ links with no joints has $F = 3(\ell - 1)$ k_1 joints (revolute & prismatic) constrain 2 freedoms k_2 joints (cylinder in slot) constrain 1 freedom $F = 3(\ell - 1) - 2k_1 - k_2$ $F = 6(\ell - 1) - 5k_1 - 4k_2 - 3k_3 - 2k_4 - k_5$ *Kutzbach formula!* Replace 3 and 6 in the above equation with λ , degree of freedom of a rigid body in the space, Constraints imposed by ith joint is $\lambda - f_i$ Constraints imposed by all joints $\sum_{i=1}^{j} (\lambda - f_i) = \lambda j - \sum_{i=1}^{j} f_i$ Then $F = \lambda(\ell - 1) - [\lambda j - \sum_{i=1}^{j} f_i]$ Simplification yields $F = \lambda(\ell - j - 1) + \sum_{i=1}^{j} f_i$ ME 301 Theory of Machines 1

Degree of Freedom of Mechanisms

- $\boldsymbol{\lambda}:$ Degree of freedom of the unconstrained bodies in the mechanism space
- $\ell :$ Number of links of the mechanism (including fixed link)
- j: Number of joints of the mechanism (ternary joints!)
- i: Degree of freedom of ith joint
- F: Degree of freedom of the mechanism

$$= \lambda(\ell - j - 1) + \sum_{i=1}^{\prime} f_i$$

Remember exceptions!

- F > 0 mechanism requires F actuations for kinematically deterministic motion F = 0 structure (immobile) unless has special dimensions
- F < 0 over-constraint (number of reductant difficusions F < 0 over-constraint (number of reductant supports is |F|) and immobile unless has special dimensions (also forces cannot be determined unless equations of equilibrium/motion are complemented with |F| number of equations relating deformations).

ME 301 Theory of Machines

$$\lambda = 3 \text{ (co-planar)}
\ell = 6
j = 7
\sum_{i=1}^{7} f_i = 7 \text{ (6R+P)}
F = \lambda(\ell - j - 1) + \sum_{i=1}^{j} f_i
F = 3(6 - 7 - 1) + 7
F = 1$$

Therefore just the piston 2 in fixed cylinder through P_{12} is sufficient to control the mechanism.

Degree of Freedom of Mechanisms

Alternative method: Two grippers are symmetric Just consider one of them $\lambda = 3$ (co-planar) $\ell = 4$

ME 301 Theory of Machi

Degree of Freedom of Mechanisms

Alternative method: Two grippers are symmetric Just consider one of them $\lambda = 3$ (co-planar) *ℓ* = 4 i = 4

ME 301 Theory of Machine

Degree of Freedom of Mechanisms

Therefore **still** just the piston 2 in fixed cylinder through P_{12} is sufficient to control the mechanism.

$$\lambda = 3 \text{ (co-planar)}
\ell = 4
j = 4
\sum_{i=1}^{4} f_i = 4 (2R+2P)
F = \lambda(\ell - j - 1) + \sum_{i=1}^{j} f_i
F = 3(4 - 4 - 1) + 4
F = 1$$

ME 301 Theory of Machi

Therefore controlling crank 2 through R_{12} is sufficient to control the Scotch yoke mechanism.

<section-header><image>

Therefore controlling crank 2 through $R_{\rm 12}$ is sufficient to control the quick return mechanism.

ME 301 Theory of Machin

Alternative approach: $\lambda = 3$ (co-planar) $\ell = 5$ j = 6 $\sum_{i=1}^{6} f_i = 8 (2CS+3R+P)$

ME 301 Theory of Mach

Alternative approach: $\lambda = 3$ (co-planar) $\ell = 5$ j = 6 $\sum_{i=1}^{6} f_i = 8 (2CS+3R+P)$ F = 3(5 - 6)F = 2

Degree of Freedom of Mechanisms

R₁₃ Therefore by controlling crank 2 through R_{12} although we can still control the quick return mechanism the angular position of roller 5 is another free parameter that cannot be controlled. This is called a *redundant freedom* that has no effect on overall motion of the mechanism therefore the actual degree of freedom is:

 $F_{actual} = 1$

ME 301 Theory of Machines

Degree of Freedom of Mechanisms

The Brakes (Approach 1): $\lambda = 3$ (co-planar) $\ell = 6$ $\sum_{i=1}^{7} f_i = 7$ (6R+P)

ME 301 Theory of Mach

Degree of Freedom of Mechanisms

The Brakes (Approach 1): $\lambda = 3$ (co-planar) *ℓ* = 6 $\sum_{i=1}^{7} f_i = 7$ (6R+P) $F = \lambda(\ell - j - 1) +$

Therefore by controlling the brake "button" 2 through P₁₂ we can apply the brakes to both wheels.

ME 301 Theory of Machines

The Brakes (Approach 2): $\lambda = 3$ (co-planar) $\ell = 7$ j = 8 $\sum_{i=1}^{8} f_i = 8$ (7R+P)

F = 21Therefore by controlling the brake "button" 2 through P₁₂ we can still apply the brakes to both wheels. However if the wear in shoes are uneven (typical in real life) say just by applying brake to rear wheel by shoe 5 would not stop the mechanism but also shoe 7 will apply the brake. That sort of mechanisms where F > number of actuators is called underactuated mechanisms. A very typical example is car differential where F = 2 but the only actuation is by the engine.

Degree of Freedom of Mechanisms

The Drive: $\lambda = 3$ (co-planar) $\ell = 5$

ME 301 Theory of Machin

Degree of Freedom of Mechanisms

The Drive: $\lambda = 3$ (co-planar) $\ell = 5$ j = 6 $\sum_{i=1}^{6} f_i = 7$ (5R+GP*)

ME 301 Theory of Machin

ME 301 Theory of Machines I

Therefore by moving the crank 2 up and down the axle of the vehicle can be powered to inspect the railroad.

Oldham Coupling: $\lambda = 3$ (co-planar) $\ell = 4$

 $\ell = 4$

ME 301 Theory of Machi

Degree of Freedom of Mechanisms

Oldham Coupling: $\lambda = 3$ (co-planar) $\ell = 4$ $\sum_{i=1}^{4} f_i = 4$ (2R+2P)

ME 301 Theory of Machin

Degree of Freedom of Mechanisms Spatial Four Bar: 101 $\lambda = 6$ (3-D) ME 301 Theory of Machin

ME 301 Theory of Machines

position of crank 2 so $F_{actual} = 1$.