Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms

Equal arm balance:
$\lambda=3$ (co-planar)
$\ell=5$

Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms

Equal arm balance:
$\lambda=3$ (co-planar)
$\ell=5$
$j=6$
$\sum_{i=1}^{6} f_{i}=6(6 \mathrm{R})$

Degree of Freedom of Mechanisms

Exceptions: Mechanism in Permanent Critical Form

Degree of Freedom of Mechanisms

Exceptions: Mechanism in Permanent Critical Form
Steam locomotive drive distribution:
$\lambda=3$ (co-planar)
$\ell=5$

$F=0$!
The equal arm balance is in permanent critical form. It will not
work for any arbitrary dimensions however here it has special dimensions which lets it work:
$\left|R_{35} R_{45}\right|=\left|R_{13} R_{14}\right|=\left|R_{23} R_{24}\right|$ and
$\left|R_{13} R_{35}\right|=\left|R_{45} R_{14}\right|(=)\left|R_{13} R_{23}\right|=\left|R_{14} R_{24}\right|$
$(-)$ is for equal arm balance.
ME 301 Theory of Machines I
Equal arm balance:
$\lambda=3$ (co-planar)
$\ell=5$
$\mathrm{j}=6$
$\sum_{i=1}^{6} f_{i}=6(6 \mathrm{R})$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(5-6-1)+6$

Theory of Machines I

Degree of Freedom of Mechanisms

Exceptions: Mechanism in Permanent Critical Form
Steam locomotive drive distribution:
$\lambda=3$ (co-planar)
$\ell=5$
$\mathrm{j}=6$
$\sum_{i=1}^{6} f_{i}=6(6 \mathrm{R})$

Degree of Freedom of Mechanisms

Exceptions: Mechanism in Permanent Critical Form
Steam locomotive drive distribution:
$\lambda=3$ (co-planar)
$\ell=5$
$j=6$
$\sum_{i=1}^{6} f_{i}=6(6 \mathrm{R})$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(4-6-1)+6$
$F=0$!
The parallelogram linkage is in permanent critical form. It will not work for any arbitrary dimensions however here it has special dimensions which lets it work:
$\left|R_{14} R_{45}\right|=\left|R_{13} R_{35}\right|=\left|R_{12} R_{25}\right|$ and
$\left|R_{13} R_{14}\right|=\left|R_{35} R_{45}\right|,\left|R_{13} R_{12}\right|=\left|R_{35} R_{25}\right|$

Degree of Freedom of Mechanisms

Steam locomotive power arm:
$\lambda=3$ (co-planar)
$\ell=4$

Steam locomotive power arm:
$\lambda=3$ (co-planar)
$\ell=4$
$j=4$
$\sum_{i=1}^{4} f_{i}=4(3 \mathrm{R}+\mathrm{P})$

Degree of Freedom of Mechanisms
Steam locomotive power arm:
$\lambda=3$ (co-planar)
$\ell=4$
$\mathrm{j}=4$
$\sum_{i=1}^{4} f_{i}=4(3 \mathrm{R}+\mathrm{P})$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(4-4-1)+4$
$F=1$
This is just a slider-crank mechanism like an internal combustion engine.

Degree of Freedom of Mechanisms
Pantograph mechanism:
$\lambda=3$ (co-planar)
$\ell=5$

Degree of Freedom of Mechanisms
Pantograph mechanism:
$\lambda=3$ (co-planar)
$\ell=5$
$\mathrm{j}=5$
$\sum_{i=1}^{5} f_{i}=5(5 \mathrm{R})$

Degree of Freedom of Mechanisms

Pantograph mechanism:
$\lambda=3$ (co-planar)
$\ell=5$
$\mathrm{j}=5$
$\sum_{i=1}^{5} f_{i}=5(5 \mathrm{R})$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(5-5-1)+5$
$F=2$
Point E can trace any curve on plane (i.e arbitrary say x and y) so that point C can follow the same curve scaled down.

Special Spaces
Spherical Space $\lambda=3$

Spherical Four-Bar

Degree of Freedom of Mechanisms

$F=\lambda(\ell-j-1)+\sum_{\substack{i=1}}^{j} f_{i}$
The general degree of freedom equation cares only the topological characteristics of the mechanism (e.g. number of links, number and type of joints but not the dimensions) and the degree of freedom of the space the bodies are in.

- A joint should permit relative motion of a body with respect to other.
If there is no relative motion permitted, it is not a joint kinematically and those parts of the body should be accounted as a single link.
- What identifies the joint type is the relative motion of one body relative to the other.

Degree of Freedom of Mechanisms

$F=\lambda(\ell-j-1)+\sum_{i=1}^{J} f_{i}$

- The degree of freedom of the space of all the links in the mechanism (i.e. λ) should be the same. If not the mechanism should be separated.

Degree of Freedom of Mechanisms $F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$

- The degree of freedom of ordinary gear pair, $f_{i}=1$ because it is rolling without slipping.
- The regular gear pair (GP*) is in permanent critical form because of special dimensional requirements:
- The gears are centered at certain special points (generally centers of circles),
- The distances between these joints are the sum (or difference if internal mesh) of the radii of the gears.
Therefore GP* is a workaround to obtain correct degree of freedom for the gears in permanent critical form.

Degree of Freedom of Mechanisms

 $F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$Therefore GP* is a workaround to obtain correct degree of freedom for the gears in permanent critical form.
$\lambda=3$ (co-planar)
$\ell=3$
$j=3$
$\sum_{i=1}^{3} f_{i}=4\left(2 \mathrm{R}+\mathrm{GP}^{*}\right)$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(3-3-1)+4$
$F=1$
Permanent critical form because R_{12} and R_{13} are centers of gears AND $\left|R_{12} R_{13}\right|=r_{2}+r_{3}$
me 301 Theory of Machines I

Degree of Freedom of Mechanisms

$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
Force-closed gear pair:
$\lambda=3$ (co-planar)
$\ell=4$
$j=4$
$\sum_{i=1}^{4} f_{i}=4(3 \mathrm{R}+\mathrm{GP})$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(4-4-1)+4$
$F=1$

Degree of Freedom of Mechanisms
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
Force-closed gear pair:
$\lambda=3$ (co-planar)
$\ell=4$
$j=4$
$\sum_{i=1}^{4} f_{i}=4(3 \mathrm{R}+\mathrm{GP})$
$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$F=3(4-4-1)+4$
$F=1$

Constrained－Unconstrained Mechanisms

Constrained mechanism may mean：
1． $\mathrm{F}=1$
2． $\mathrm{F}>1$ and number of actuators $=\mathrm{F}$
Unconstrained（underactuated）mechanisms have number of inputs＜F therefore their motion cannot be determined kinematically．Forces determine the motion．

Typical applications：
Car differential（ $\mathrm{F}=2$ only drive is engine so that on straight roads two wheel share the same speed but during turns inner wheel is slower）
Force limiting under emergency conditions

Kinematic Inversion

Let the fixed link move and fix another link with the purpose of obtaining another mechanism．

Grübler＇s Equation

```
3\ell-2j=4
Consequences:
- \ell must be even
    3\ell=2j+4,2j+4 must be even whatever j is. For 3\ell to be even \ell
    must be even!
- }\mp@subsup{\ell}{2}{}\geq
    \ell=\ell⿱亠䒑⿱幺小
    Number of kinematic elements in a mechanism =2j
    2j=2\ell2}+3\mp@subsup{\ell}{3}{}+4\mp@subsup{\ell}{4}{}+\cdots+n\mp@subsup{\ell}{n}{
    Substituting into Grübler's equation:
```



```
    \ell
    \ell
    For }P=0,\mp@subsup{\ell}{2}{}=4\mathrm{ , for }P>0,\mp@subsup{\ell}{2}{}>
```


Kinematic Inversion

Let the fixed link move and fix another link with the purpose of obtaining another mechanism．

Grübler＇s Equation

$F=\lambda(\ell-j-1)+\sum_{i=1}^{j} f_{i}$
$\mathrm{F}=1$（Single degree of freedom／constrained mechanism）
$\lambda=3$ ：Planar mechanism
ℓ ：Number of links of the mechanism
j ：Number of joints of the mechanism
$\mathrm{f}_{\mathrm{i}}=1$（only revolute and prismatic joints so $\sum_{i=1}^{j} f_{i}=\mathrm{j}$ ）
$1=3(\ell-j-1)+j$
$3 \ell-2 j=4$ ：Grübler＇s（Gruebler＇s）Equation

ME 301 Theory of Machines I

Grübler＇s Equation

$3 \ell-2 j=4$
Consequences（cont＇ed）：
－Number of kinematic elements in one link cannot exceed half the number of links in the mechanism，$\ell_{k}, k \leq \ell / 2$
Consider type（a）link with maximum possible kinematic elements on it．
Type（b）links（ternary）links are connected to type（a）links．
Type（c）links（binary）connect type（b）links．
Type（a）link has i kinematic elements on it and there are i type（b） links，（i－1）type（c）links．
Total number of links in the mechanism for this case is
$\ell=1+i+(i-1)=2 i$
or ℓ
$i=\frac{\ell}{2}$
$i=$

Enumeration of Kinematic Chains and Mechanisms
Enumeration: A complete, ordered listing of all the items in a collection (Wikipedia)

1. the act or process of making or stating a list of things one after another also: the list itself
2. the act or process of counting something or a count made of something (anim)
Determine all possible kinematic chains that satisfy certain predetermined criteria.

Enumeration of Kinematic Chains and Mechanisms
$3 \ell-2 j=4$
List all planar $\mathrm{F}=1$ mechanisms with 4 links:

Figures from electronic lecture notes of SEes Soylemez herps// ocuumetuedu.t/course/vieu.phppidal 132
ME 301 Theory of Machines I

Enumeration of Kinematic Chains and Mechanisms $3 \ell-2 j=4$
List all planar $\mathrm{F}=1$ mechanisms with 6 links:

With one prismatic joint, others revolute

Figures from electronic lecture notes of Eres Söylemez hitps// ocw metueduti/course/view.iphprid=132 ME 301 Theory of Machines I

