

Degree of Freedom of Mechanisms Equal arm balance: $\lambda = 3$ (co-planar) $\ell = 5$ ME 301 Theory of Machi

Degree of Freedom of Mechanisms

Degree of Freedom of Mechanisms

Equal arm balance: $\lambda = 3$ (co-planar) *ℓ* = 5 j = 6 $\sum_{i=1}^{6} f_i = 6$ (6R)

of N

 $\sum_{i=1}^{6} f_i = 6$ (6R) R $F = \lambda(\ell - j - 1)$ F = 3(5 - 6 - 1)F = 0!The equal arm balance is in *permanent critical form*. It will not work for any arbitrary dimensions however here it has special dimensions which lets it work: $|R_{35}R_{45}| = |R_{13}R_{14}| = |R_{23}R_{24}|$ and

 $|\mathbf{R}_{13}\mathbf{R}_{35}| = |\mathbf{R}_{45}\mathbf{R}_{14}|$ (=) $|\mathbf{R}_{13}\mathbf{R}_{23}| = |\mathbf{R}_{14}\mathbf{R}_{24}|$ (=) is for equal arm balance.

Equal arm balance:

 $\lambda = 3$ (co-planar)

j = 6

Degree of Freedom of Mechanisms

Exceptions: Mechanism in Permanent Critical Form

Degree of Freedom of Mechanisms

Exceptions: Mechanism in Permanent Critical Form Steam locomotive drive distribution:

 $\lambda = 3$ (co-planar) *ℓ* = 5

ME 301 Theory of Machines

Rag

ME 301 Theory of Ma

ME 301 Theory of Machin

ME 301 Theory of M

Degree of Freedom of Mechanisms

Exceptions: Mechanism in Permanent Critical Form Steam locomotive drive distribution:

 $\lambda = 3 \text{ (co-planar)}$ $\ell = 5$ j = 6 $\sum_{i=1}^{6} f_i = 6 \text{ (6R)}$

ME 301 Theory of Machi

ME 301 Theory of Machines

Degree of Freedom of Mechanisms

Exceptions: Mechanism in Permanent Critical Form Steam locomotive drive distribution: $\lambda = 3$ (co-planar) $\ell = 5$ j = 6 $\sum_{i=1}^{6} f_i = 6$ (6R) $F = \lambda(\ell - j - 1) + \sum_{i=1}^{j} f_i$ F = 3(4 - 6 - 1) + 6F = 0!The parallelogram linkage is in permanent critical form. It will not work for *any arbitrary* dimensions however here it has special dimensions which lets it work:

$$\begin{split} & |R_{14}R_{45}| = |R_{13}R_{35}| = |R_{12}R_{25}| \text{ and } \\ & |R_{13}R_{14}| = |R_{35}R_{45}|, \ |R_{13}R_{12}| = |R_{35}R_{25}| \end{split}$$

Degree of Freedom of Mechanisms

Pantograph mechanism: $\lambda = 3$ (co-planar) $\ell = 5$

ME 301 Theory of Machi

Degree of Freedom of Mechanisms

Pantograph mechanism: $\lambda = 3$ (co. planar)	R ₂₅
$\ell = 5$	R_{23}^2 4
j = 5 $\sum_{i=1}^{5} f_{i} = f_{i}(f_{i} D)$	0 3 c R ₁₃
$\sum_{i=1}^{n} j_i = 5 (5R)$	

Degree of Freedom of Mechanisms
$F = \lambda(\ell - j - 1) + \sum_{i=1}^{j} f_i$
Figures from electronic lecture notes of Eres Stylemez https://ocumetu.edu.tr/course/iseu.php?id=13 The general degree of freedom equation cares only the
topological characteristics of the mechanism (e.g. numbe
of links, number and type of joints <i>but</i> not the dimensions and the degree of freedom of the space the bodies are in.
• A joint should permit relative motion of a body with respect to other.
If there is no relative motion permitted, it is <i>not</i> a joint kinematicall and those parts of the body should be accounted as a single link.
· What identifies the joint type is the relative motion of one
body relative to the other.

Degree of Freedom of Mechanisms

 The degree of freedom of the space of all the links in the mechanism (i.e. λ) should be the same. If not the mechanism should be separated.

Degree of Freedom of Mechanisms

$$F = \lambda(\ell - j - 1) + \sum_{i=1}^{j} f_i$$

- The degree of freedom of ordinary gear pair, $f_i = 1$ because it is rolling without slipping.
- The *regular* gear pair (GP*) is in permanent critical form because of special dimensional requirements:
 - The gears are centered at certain special points (generally centers of circles),
 - The distances between these joints are the sum (or difference if internal mesh) of the radii of the gears.
 - Therefore GP* is a *workaround* to obtain correct degree of freedom for the gears in permanent critical form.

ME 301 Theory of Machines

Constrained – Unconstrained Mechanisms

Constrained mechanism may mean:

1. F = 1

2. F > 1 and number of actuators = F

Unconstrained (underactuated) mechanisms have number of inputs < F therefore their motion cannot be determined kinematically. Forces determine the motion.

Typical applications:

Car differential (F = 2 only drive is engine so that on straight roads two wheel share the same speed but during turns inner wheel is slower)

Kinematic Inversion

Let the fixed link move and fix another link with the purpose of obtaining another mechanism.

ME 301 Theory of Machine

ME 301 Theory of Mach

Grübler's Equation

$$F = \lambda(\ell - j - 1) + \sum_{i=1}^{J} f_i$$

F = 1 (Single degree of freedom / constrained mechanism)

- $\lambda = 3$: Planar mechanism
- $\ell:$ Number of links of the mechanism

j: Number of joints of the mechanism

 $\mathbf{f_i}=1$ (only revolute and prismatic joints so $\sum_{i=1}^j f_i=\mathbf{j})$ $1=3(\ell-j-1)+j$

 $3\ell - 2j = 4$: Grübler's (Gruebler's) Equation

Grübler's Equation

$3\ell - 2j = 4$

Consequences:

- ℓ must be even 3ℓ = 2j + 4, 2j + 4 must be even whatever j is. For 3ℓ to must be even!
 ℓ_n > 4
- $\ell_2 \leq \tau$ $\ell = \ell_2 + \ell_3 + \ell_4 + \dots + \ell_n$ Number of kinematic elements in a mechanism = 2j
- $\begin{array}{l} 2j = 2\ell_2 + 3\ell_3 + 4\ell_4 + \dots + n\ell_n \\ \text{Substituting into Grübler's equation:} \\ 3(\ell_2 + \ell_3 + \ell_4 + \dots + \ell_n) (2\ell_2 + 3\ell_3 + 4\ell_4 + \dots + n\ell_n) = 4 \\ \ell_2 [\ell_4 + 2\ell_5 \dots + (n-3)\ell_n] = 4 \\ \ell_4 + 2\ell_5 \dots + (n-3)\ell_n = P \ge 0 \\ \text{For } P = 0, \ \ell_2 = 4, \ \text{for } P > 0, \ \ell_2 > 4 \end{array}$

Grübler's Equation

$3\ell - 2j = 4$

- Consequences (cont'ed):
- Number of kinematic elements in one link cannot exceed half the number of links in the mechanism, $\ell_k, k \leq \ell/2$ Consider type (a) link with maximum possible kinematic elements on it.
- Type (b) links (ternary) links are connected to type (a) links.
- Type (c) links (binary) connect type (b) links.
- Type (a) link has i kinematic elements on it and there are i type (b) links, (*i*-1) type (c) links.
- Total number of links in the mechanism for this case is l = 1 + i + (i 1) = 2i

ME 301 Theory of M

Enumeration of Kinematic Chains and Mechanisms

Enumeration: A complete, ordered listing of all the items in a collection (*Wikipedia*)

- 1. the act or process of making or stating a list of things one after another also: the list itself
- the act or process of counting something or a count made of something

Determine all possible kinematic chains that satisfy certain predetermined criteria.

ME 301 Theory of Machines

