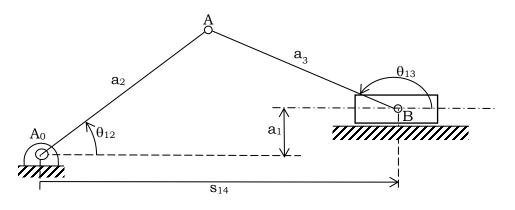
Exploration of Solution of Loop Closure Equations for RRRP (Slider-Crank and Inversions) Mechanisms

Based on Lecture Notes of Prof. Dr. M. Kemal ÖZGÖREN

1. Slider-Crank Mechanism



Loop closure equation in vector form: $\overrightarrow{A_0A_2} = \overrightarrow{A_0B} + \overrightarrow{BA_3}$

Loop closure equation in complex numbers: $a_2e^{i\theta_{12}} = s_{14} + ia_1 + a_3e^{i\theta_{13}}$ Real part of loop closure equation: $a_2\cos\theta_{12} = s_{14} + a_3\cos\theta_{13}$ (1.1) Imaginary part of loop closure equation: $a_2\sin\theta_{12} = a_1 + a_3\sin\theta_{13}$ (1.2)

i. Let θ₁₂ be input a. First solve for s₁₄ then θ₁₃:

Rearrange (1.1) and (1.2) as:

$$a_2 \cos \theta_{12} - s_{14} = a_3 \cos \theta_{13}$$

$$a_2\sin\theta_{12} - a_1 = a_3\sin\theta_{13}$$

Squaring the equations and adding them yields:

$$(a_2 \cos \theta_{12} - s_{14})^2 + (a_2 \sin \theta_{12} - a_1)^2 = a_3^2$$

Expansion and refactoring yields:

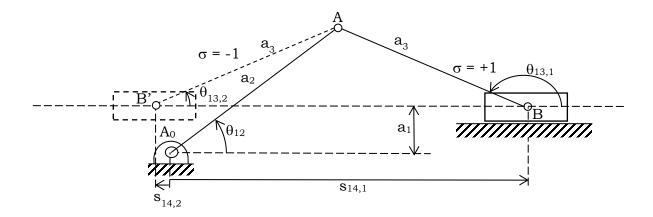
 $s_{14}^2 - (2a_2\cos\theta_{12})s_{14} + (a_2^2 + a_1^2 - a_3^2 - 2a_1a_2\sin\theta_{12}) = 0$ which is a quadratic in s_{14} , solution yields:

$$s_{14} = a_2 \cos \theta_{12} \pm \sqrt{\left(a_2 \cos \theta_{12}\right)^2 - \left(a_2^2 + a_1^2 - a_3^2 - 2a_1 a_2 \sin \theta_{12}\right)}$$

 s_{14} has a real solution only for $(a_2 \cos \theta_{12})^2 - (a_2^2 + a_1^2 - a_3^2 - 2a_1a_2 \sin \theta_{12}) \ge 0$

Let
$$s_{14} = a_2 \cos \theta_{12} + \sigma \sqrt{(a_2 \cos \theta_{12})^2 - (a_2^2 + a_1^2 - a_3^2 - 2a_1a_2 \sin \theta_{12})}$$
 where $\sigma = \pm 1$

corresponds to the two different closures of the mechanism as:



After finding two possible solutions for s_{14} , the corresponding θ_{13} to each of the two possible s_{14} can be found by rearranging (1) and (2) as:

$$\cos \theta_{13} = \frac{a_2 \cos \theta_{12} - s_{14}}{a_3} = x_3$$
$$\sin \theta_{13} = \frac{a_2 \sin \theta_{12} - a_1}{a_3} = y_3$$

Therefore $\theta_{13} = a \tan 2(x_3, y_3)$

az

Please notice that for a selected closure (i.e. σ) there is one s₁₄ and only one corresponding θ_{13} .

b. First solve for θ_{13} then s_{14} :

(1.2) does not contain s_{14} so rearranging (1.2) yields:

$$\sin \theta_{13} = \frac{a_2 \sin \theta_{12} - a_1}{a_3} = y_3$$

Recall $\sin^2 \theta_{13} + \cos^2 \theta_{13} = 1$ therefore $\cos \theta_{13} = \sigma \sqrt{1 - \sin^2 \theta_{13}} = \sigma \sqrt{1 - y_3^2}$ where $\sigma = \pm 1$ corresponds to the two different closures of the mechanism and $\theta_{13} = a \tan 2(x_3, y_3)$.

Rearranging (1.1) as $s_{14} = a_2 \cos \theta_{12} - a_3 \cos \theta_{13}$ yields the corresponding s_{14} of the selected closure.

ii. Let s14 be the inputa. First solve θ12 then θ13:

Rearrange (1.1) and (1.2) as:

$$a_2 \cos \theta_{12} - s_{14} = a_3 \cos \theta_{13}$$

 $a_2\sin\theta_{12} - a_1 = a_3\sin\theta_{13}$

Squaring both and adding them yields:

$$(a_2 \cos \theta_{12} - s_{14})^2 + (a_2 \sin \theta_{12} - a_1)^2 = a_3^2$$

Expansion and refactoring yields:

 $2a_{2}s_{14}\cos\theta_{12} + 2a_{1}a_{2}\sin\theta_{12} - (a_{2}^{2} + a_{1}^{2} - a_{3}^{2} + s_{14}^{2}) = 0$ where θ_{12} is to be determined.

One way is to use *half-tangent* method as

Let
$$t_{12} = tan\left(\frac{\theta_{12}}{2}\right)$$
 then $\cos\theta_{12} = \frac{1 - t_{12}^2}{1 + t_{12}^2}$ and $\sin\theta_{12} = \frac{2t_{12}}{1 + t_{12}^2}$.

Substitution yields

$$2a_{2}s_{14}\frac{1-t_{12}^{2}}{1+t_{12}^{2}}+2a_{1}a_{2}\frac{2t_{12}}{1+t_{12}^{2}}-\left(a_{2}^{2}+a_{1}^{2}-a_{3}^{2}+s_{14}^{2}\right)=0$$

Rearranging yields:

$$\left(a_{2}^{2} + a_{1}^{2} - a_{3}^{2} + s_{14}^{2} - 2a_{2}s_{14} \right) t_{12}^{2} + 4a_{1}a_{2}t_{12} + \left(a_{2}^{2} + a_{1}^{2} - a_{3}^{2} + s_{14}^{2} + 2a_{2}s_{14} \right) = 0$$

which is in the form $At_{12}^2 + Bt_{12} + C = 0$ where

$$A = a_2^2 + a_1^2 - a_3^2 + s_{14}^2 - 2a_2s_{14}$$

$$B = 4a_1a_2t_{12}$$

$$C = a_2^2 + a_1^2 - a_3^2 + s_{14}^2 + 2a_2s_{14}$$

 $t_{12} = \frac{-B + \sigma \sqrt{B^2 + 4AC}}{2A}$ where $\sigma = \pm 1$ corresponds to the two different closures of the mechanism and $\theta_{12} = 2 \tan^{-1}(t_{12})$. Please note that half tangent is single valued (therefore we can use inverse tangent function here)!

Other alternative to solve this equation is *phase angle* method. Rearranging yields:

 $s_{14}\cos\theta_{12} + a_1\sin\theta_{12} = \frac{{a_2}^2 + {a_1}^2 - {a_3}^2 + {s_{14}}^2}{2a_2} \text{ or } a\cos\theta_{12} + b\sin\theta_{12} = c$

For r > 0 let $a = r \cos \phi$ and $b = r \sin \phi$ then $r = \sqrt{a^2 + b^2}$ and $\phi = a \tan 2(a, b)$.

Substitution yields

 $r\cos\phi\cos\theta_{12} + r\sin\phi\sin\theta_{12} = c$

which boils down to

$$r\cos(\varphi-\theta_{12})=c$$

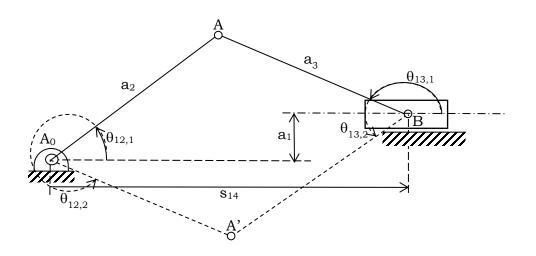
The solution yields $\theta_{12} = \varphi + \sigma \cos^{-1}\left(\frac{c}{r}\right)$ where $\sigma = \pm 1$ corresponds to the two different closures of the mechanism.

After finding two possible solutions for θ_{12} , for two possible closures of the mechanism, the corresponding θ_{13} to each of the two possible θ_{12} can be found by rearranging (1.1) and (1.2) as:

$$\cos \theta_{13} = \frac{a_2 \cos \theta_{12} - s_{14}}{a_3} = x_3$$
$$\sin \theta_{13} = \frac{a_2 \sin \theta_{12} - a_1}{a_3} = y_3$$

Therefore $\theta_{13} = a \tan 2(x_3, y_3)$

The two closures of the mechanism are:



b. First solve θ_{13} then θ_{12}

Squaring (1.1) and (1.2) and adding them eliminates θ_{12} as

$$a_2^2 = (s_{14} + a_3 \cos \theta_{13})^2 + (a_1 + a_3 \sin \theta_{13})^2$$

and simplification yields

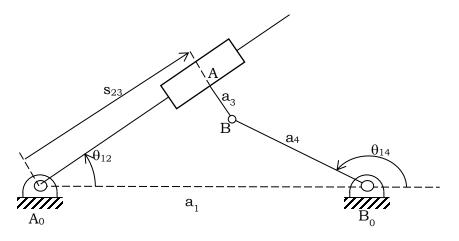
$$s_{14}\cos\theta_{13} + a_1\sin\theta_{13} = \frac{a_2^2 - s_{14}^2 - a_1^2 - a_3^2}{2a_3}$$

this equation can be solved either by half-tangent or phase angle method as presented before to find two θ_{13} values corresponding to two closures of the mechanism. Then

$$\cos \theta_{12} = \frac{a_3 \cos \theta_{13} + s_{14}}{a_2} = x_2$$
$$\sin \theta_{12} = \frac{a_3 \sin \theta_{13} + a_1}{a_2} = y_2$$

and $\theta_{12} = a \tan 2(x_2, y_2)$

2. Inverted Slider-Crank Mechanism



Loop closure equation in vector form: $\overrightarrow{A_0A} + \overrightarrow{AB_3} = \overrightarrow{A_0B_0} + \overrightarrow{B_0B_4}$

Loop closure equation in complex numbers: $a_2e^{i\theta_{12}} + a_3e^{i\left(\theta_{12} - \frac{\pi}{2}\right)} = a_1 + a_4e^{i\theta_{14}}$

which boils down to $a_2e^{i\theta_{12}} - ia_3e^{i\theta_{12}} = a_1 + a_4e^{i\theta_{14}}$

Real part of loop closure equation: $s_{23} \cos \theta_{12} + a_3 \sin \theta_{12} = a_1 + a_4 \cos \theta_{14}$ (2.1)

Imaginary part of loop closure equation: $s_{23}\sin\theta_{12} - a_3\cos\theta_{12} = a_4\sin\theta_{14}$ (2.2)

i. Let θ₁₄ be input a. First solve for s₂₃ then θ₁₂:

Square (2.1) and (2.2) and add:

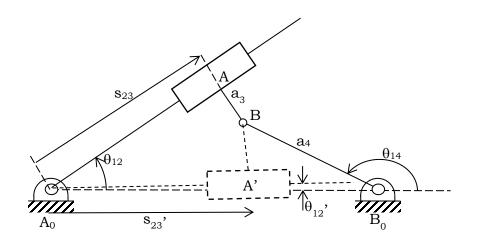
$$s_{23}^{2} + a_{3}^{2} = a_{1}^{2} + 2a_{1}a_{4}\cos\theta_{14} + a_{4}^{2}$$

yielding $s_{23} = \sigma \sqrt{a_1^2 - a_3^2 + a_4^2 + 2a_1a_4 \cos \theta_{14}}$ where $\sigma = \pm 1$ corresponds to the two different closures of the mechanism.

To find θ_{12} let $\cos \theta_{12} = x_2$ and $\sin \theta_{12} = y_2$, substituting (1) and (2) into matrix form:

$$\begin{bmatrix} s_{23} & -a_3 \\ a_3 & s_{23} \end{bmatrix} \begin{cases} y_3 \\ x_3 \end{cases} = \begin{cases} a_4 \sin \theta_{14} \\ a_1 + a_4 \cos \theta_{14} \end{cases} \text{ from which } \theta_{12} = a \tan 2(x_2, y_2)$$

The two closures of the mechanism are



b. First solve for θ_{12} then s_{23}

Using equations (2.1) and (2.2), $(2.1)\sin\theta_{12} - (2.2)\cos\theta_{12}$ yields

$$a_3 = a_1 \sin \theta_{12} + a_4 \left(\cos \theta_{14} \sin \theta_{12} - \sin \theta_{14} \cos \theta_{12} \right)$$

rearranging yields $(a_1 + a_4 \cos \theta_{14}) \sin \theta_{12} - (a_4 \sin \theta_{14}) \cos \theta_{12} - a_3 = 0$ which can either be solved by half-tangent substitution or phase angle method as presented before where the two solutions correspond to two closures of the mechanism.

To determine s_{23} corresponding to the selected closure (i.e. θ_{12}) rearrange (2.1) and (2.2) as:

$$s_{23}\cos\theta_{12} = a_1 + a_4\cos\theta_{14} - a_3\sin\theta_{12} = x_3$$

 $s_{23}\sin\theta_{12} = a_4\sin\theta_{14} + a_3\cos\theta_{12} = y_3$

Multiply x_3 by $\cos\theta_{12}$ and y_3 by $\sin\theta_{12}$ to obtain:

 $s_{23} = x_3 \cos \theta_{12} + y_3 \sin \theta_{12}$

Please note that this final equation will be free of singularities of $\sin\theta_{12}$ or $\cos\theta_{12}$ being zero during full cycle analysis which are false singularities.

ii. Let θ_{12} be input

a. First solve for θ_{14} then s₂₃:

Using equations (2.1) and (2.2), (2.1) $\sin \theta_{12} - (2.2) \cos \theta_{12}$ yields $a_3 = a_1 \sin \theta_{12} + a_4 (\cos \theta_{14} \sin \theta_{12} - \sin \theta_{14} \cos \theta_{12})$

rearranging yields $(a_4 \cos \theta_{12}) \sin \theta_{14} - (a_4 \sin \theta_{12}) \cos \theta_{14} + a_3 - a_1 \sin \theta_{12} = 0$ which can either be solved by half-tangent substitution or phase angle method as presented

before where the two solutions correspond to two closures of the mechanism. Corresponding s_{23} can be found as presented in section 2.i.b to avoid mentioned false singularities.

b. First solve for s_{23} then θ_{14} :

Sum of squares of (2.1) and (2.2) yields:

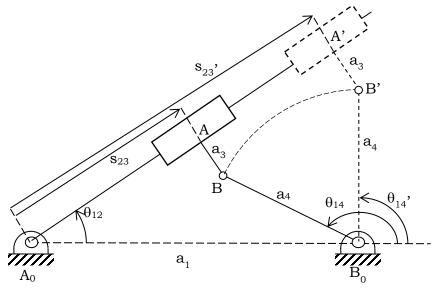
 $s_{23}^{2} - (2a_{1}\cos\theta_{12})s_{23} + (a_{1}^{2} + a_{3}^{2} - a_{4}^{2} - 2a_{1}a_{3}\sin\theta_{12}) = 0 \text{ which is a quadratic in}$

 s_{23} whose two solutions correspond to two closures of the mechanism. To determine the corresponding θ_{14} to the selected closure (2.1) and (2.2) can be rearranged as:

$$\cos \theta_{14} = \frac{s_{23} \cos \theta_{12} + a_3 \sin \theta_{12} - a_1}{a_4} = x_4$$
$$\sin \theta_{14} = \frac{s_{23} \sin \theta_{12} - a_3 \cos \theta_{12}}{a_4} = y_4$$

so $\theta_{14} = a \tan 2(x_4, y_4)$

The two closures are:



iii. Let s₂₃ be input (can be a piston or linear actuator)a. First solve for θ₁₂ then θ₁₄:

Rearrange (2.1) and (2.2) as:

 $s_{23}\cos\theta_{12} + a_3\sin\theta_{12} - a_1 = a_4\cos\theta_{14}$

$$s_{23}\sin\theta_{12} - a_3\cos\theta_{12} = a_4\sin\theta_{14}$$

Square these equations and add to obtain

$$(s_{23})\cos\theta_{12} + (a_3)\sin\theta_{12} - \left(\frac{s_{23}^2 + a_3^2 + a_1^2 - a_4^2}{2a_1}\right) = 0$$
 which can either be solved by

half-tangent substitution or phase angle method as presented before where the two solutions correspond to two closures of the mechanism. To determine the corresponding θ_{14} to the selected closure (2.1) and (2.2) can be rearranged as:

$$\cos \theta_{14} = \frac{s_{23} \cos \theta_{12} + a_3 \sin \theta_{12} - a_1}{a_4} = x_4$$
$$\sin \theta_{14} = \frac{s_{23} \sin \theta_{12} - a_3 \cos \theta_{12}}{a_4} = y_4$$

so
$$\theta_{14} = a \tan 2(x_4, y_4)$$

The two closures are:

