Exploration of Solution of Loop Closure Equations for RRRP (Slider-Crank and Inversions) Mechanisms

Based on Lecture Notes of Prof. Dr. M. Kemal ÖZGÖREN

1. Slider-Crank Mechanism

Loop closure equation in vector form: $\vec{A}_{0} \mathrm{~A}_{2}=\overrightarrow{\mathrm{A}_{0}} \mathrm{~B}+\overrightarrow{\mathrm{BA}} 3$
Loop closure equation in complex numbers: $\mathrm{a}_{2} \mathrm{e}^{\mathrm{i} \theta_{12}}=\mathrm{s}_{14}+\mathrm{ia}_{1}+\mathrm{a}_{3} \mathrm{e}^{\mathrm{i} \theta_{13}}$
Real part of loop closure equation: $\quad \mathrm{a}_{2} \cos \theta_{12}=\mathrm{s}_{14}+\mathrm{a}_{3} \cos \theta_{13}$
Imaginary part of loop closure equation: $a_{2} \sin \theta_{12}=a_{1}+a_{3} \sin \theta_{13}$

i. Let θ_{12} be input

a. First solve for \mathbf{s}_{14} then θ_{13} :

Rearrange (1.1) and (1.2) as:
$a_{2} \cos \theta_{12}-s_{14}=a_{3} \cos \theta_{13}$
$a_{2} \sin \theta_{12}-a_{1}=a_{3} \sin \theta_{13}$
Squaring the equations and adding them yields:
$\left(a_{2} \cos \theta_{12}-s_{14}\right)^{2}+\left(a_{2} \sin \theta_{12}-a_{1}\right)^{2}=a_{3}{ }^{2}$
Expansion and refactoring yields:
$s_{14}^{2}-\left(2 a_{2} \cos \theta_{12}\right) s_{14}+\left(a_{2}^{2}+a_{1}^{2}-a_{3}^{2}-2 a_{1} a_{2} \sin \theta_{12}\right)=0$ which is a quadratic in s_{14}, solution yields:

$$
s_{14}=a_{2} \cos \theta_{12} \pm \sqrt{\left(a_{2} \cos \theta_{12}\right)^{2}-\left(a_{2}^{2}+a_{1}^{2}-a_{3}^{2}-2 a_{1} a_{2} \sin \theta_{12}\right)}
$$

s_{14} has a real solution only for $\left(a_{2} \cos \theta_{12}\right)^{2}-\left(a_{2}{ }^{2}+a_{1}{ }^{2}-a_{3}{ }^{2}-2 a_{1} a_{2} \sin \theta_{12}\right) \geq 0$
Let $s_{14}=a_{2} \cos \theta_{12}+\sigma \sqrt{\left(a_{2} \cos \theta_{12}\right)^{2}-\left(a_{2}{ }^{2}+a_{1}{ }^{2}-a_{3}{ }^{2}-2 a_{1} a_{2} \sin \theta_{12}\right)}$ where $\sigma= \pm 1$ corresponds to the two different closures of the mechanism as:

After finding two possible solutions for s_{14}, the corresponding θ_{13} to each of the two possible s_{14} can be found by rearranging (1) and (2) as:

$$
\begin{aligned}
& \cos \theta_{13}=\frac{a_{2} \cos \theta_{12}-s_{14}}{a_{3}}=x_{3} \\
& \sin \theta_{13}=\frac{a_{2} \sin \theta_{12}-a_{1}}{a_{3}}=y_{3}
\end{aligned}
$$

Therefore $\theta_{13}=a \tan 2\left(x_{3}, y_{3}\right)$
Please notice that for a selected closure (i.e. σ) there is one s_{14} and only one corresponding θ_{13}.

b. First solve for θ_{13} then s_{14} :

(1.2) does not contain s_{14} so rearranging (1.2) yields:
$\sin \theta_{13}=\frac{a_{2} \sin \theta_{12}-a_{1}}{a_{3}}=y_{3}$
Recall $\sin ^{2} \theta_{13}+\cos ^{2} \theta_{13}=1$ therefore $\cos \theta_{13}=\sigma \sqrt{1-\sin ^{2} \theta_{13}}=\sigma \sqrt{1-y_{3}^{2}}$ where $\sigma= \pm 1$ corresponds to the two different closures of the mechanism and $\theta_{13}=a \tan 2\left(x_{3}, y_{3}\right)$.

Rearranging (1.1) as $s_{14}=a_{2} \cos \theta_{12}-a_{3} \cos \theta_{13}$ yields the corresponding s_{14} of the selected closure.

ii. Let s_{14} be the input

a. First solve θ_{12} then θ_{13} :

Rearrange (1.1) and (1.2) as:
$a_{2} \cos \theta_{12}-s_{14}=a_{3} \cos \theta_{13}$
$a_{2} \sin \theta_{12}-a_{1}=a_{3} \sin \theta_{13}$
Squaring both and adding them yields:
$\left(a_{2} \cos \theta_{12}-s_{14}\right)^{2}+\left(a_{2} \sin \theta_{12}-a_{1}\right)^{2}=a_{3}{ }^{2}$
Expansion and refactoring yields:
$2 a_{2} s_{14} \cos \theta_{12}+2 a_{1} a_{2} \sin \theta_{12}-\left(a_{2}{ }^{2}+a_{1}{ }^{2}-a_{3}{ }^{2}+s_{14}{ }^{2}\right)=0$ where θ_{12} is to be determined.
One way is to use half-tangent method as
Let $\mathrm{t}_{12}=\tan \left(\frac{\theta_{12}}{2}\right)$ then $\cos \theta_{12}=\frac{1-\mathrm{t}_{12}{ }^{2}}{1+\mathrm{t}_{12}{ }^{2}}$ and $\sin \theta_{12}=\frac{2 \mathrm{t}_{12}}{1+\mathrm{t}_{12}{ }^{2}}$.
Substitution yields

$$
2 \mathrm{a}_{2} \mathrm{~s}_{14} \frac{1-\mathrm{t}_{12}^{2}}{1+\mathrm{t}_{12}^{2}}+2 \mathrm{a}_{1} \mathrm{a}_{2} \frac{2 \mathrm{t}_{12}}{1+\mathrm{t}_{12}^{2}}-\left(\mathrm{a}_{2}^{2}+\mathrm{a}_{1}^{2}-\mathrm{a}_{3}^{2}+\mathrm{s}_{14}^{2}\right)=0
$$

Rearranging yields:

$$
\left(\mathrm{a}_{2}^{2}+\mathrm{a}_{1}^{2}-\mathrm{a}_{3}^{2}+\mathrm{s}_{14}^{2}-2 \mathrm{a}_{2} \mathrm{~s}_{14}\right) \mathrm{t}_{12}^{2}+4 \mathrm{a}_{1} \mathrm{a}_{2} \mathrm{t}_{12}+\left(\mathrm{a}_{2}^{2}+\mathrm{a}_{1}^{2}-\mathrm{a}_{3}^{2}+\mathrm{s}_{14}^{2}+2 \mathrm{a}_{2} \mathrm{~s}_{14}\right)=0
$$

which is in the form $\mathrm{At}_{12}{ }^{2}+\mathrm{Bt}_{12}+\mathrm{C}=0$ where
$\mathrm{A}=\mathrm{a}_{2}{ }^{2}+\mathrm{a}_{1}{ }^{2}-\mathrm{a}_{3}{ }^{2}+\mathrm{s}_{14}{ }^{2}-2 \mathrm{a}_{2} \mathrm{~s}_{14}$
$B=4 a_{1} a_{2} t_{12}$
$\mathrm{C}=\mathrm{a}_{2}{ }^{2}+\mathrm{a}_{1}{ }^{2}-\mathrm{a}_{3}{ }^{2}+\mathrm{s}_{14}{ }^{2}+2 \mathrm{a}_{2} \mathrm{~s}_{14}$
$t_{12}=\frac{-B+\sigma \sqrt{\mathrm{B}^{2}+4 \mathrm{AC}}}{2 \mathrm{~A}}$ where $\sigma= \pm 1$ corresponds to the two different closures of the mechanism and $\theta_{12}=2 \tan ^{-1}\left(\mathrm{t}_{12}\right)$. Please note that half tangent is single valued (therefore we can use inverse tangent function here)!

Other alternative to solve this equation is phase angle method. Rearranging yields:
$\mathrm{s}_{14} \cos \theta_{12}+\mathrm{a}_{1} \sin \theta_{12}=\frac{\mathrm{a}_{2}{ }^{2}+\mathrm{a}_{1}{ }^{2}-\mathrm{a}_{3}{ }^{2}+\mathrm{s}_{14}{ }^{2}}{2 \mathrm{a}_{2}}$ or $\mathrm{a} \cos \theta_{12}+\mathrm{b} \sin \theta_{12}=\mathrm{c}$
For $r>0$ let $a=r \cos \phi$ and $b=r \sin \phi$ then $r=\sqrt{a^{2}+b^{2}}$ and $\phi=a \tan 2(a, b)$.
Substitution yields
$\mathrm{r} \cos \varphi \cos \theta_{12}+\mathrm{r} \sin \phi \sin \theta_{12}=\mathrm{c}$
which boils down to
$\mathrm{r} \cos \left(\varphi-\theta_{12}\right)=\mathrm{c}$
The solution yields $\theta_{12}=\varphi+\sigma \cos ^{-1}\left(\frac{\mathrm{c}}{\mathrm{r}}\right)$ where $\sigma= \pm 1$ corresponds to the two different closures of the mechanism.

After finding two possible solutions for θ_{12}, for two possible closures of the mechanism, the corresponding θ_{13} to each of the two possible θ_{12} can be found by rearranging (1.1) and (1.2) as:

$$
\begin{aligned}
& \cos \theta_{13}=\frac{a_{2} \cos \theta_{12}-s_{14}}{a_{3}}=x_{3} \\
& \sin \theta_{13}=\frac{a_{2} \sin \theta_{12}-a_{1}}{a_{3}}=y_{3}
\end{aligned}
$$

Therefore $\theta_{13}=a \tan 2\left(x_{3}, y_{3}\right)$
The two closures of the mechanism are:

b. First solve θ_{13} then θ_{12}

Squaring (1.1) and (1.2) and adding them eliminates θ_{12} as
$a_{2}^{2}=\left(s_{14}+a_{3} \cos \theta_{13}\right)^{2}+\left(a_{1}+a_{3} \sin \theta_{13}\right)^{2}$
and simplification yields
$s_{14} \cos \theta_{13}+a_{1} \sin \theta_{13}=\frac{a_{2}{ }^{2}-s_{14}{ }^{2}-a_{1}{ }^{2}-a_{3}{ }^{2}}{2 a_{3}}$
this equation can be solved either by half-tangent or phase angle method as presented before to find two θ_{13} values corresponding to two closures of the mechanism. Then

$$
\begin{aligned}
& \cos \theta_{12}=\frac{a_{3} \cos \theta_{13}+s_{14}}{a_{2}}=x_{2} \\
& \sin \theta_{12}=\frac{a_{3} \sin \theta_{13}+a_{1}}{a_{2}}=y_{2}
\end{aligned}
$$

and $\theta_{12}=\mathrm{atan} 2\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$

2. Inverted Slider-Crank Mechanism

Loop closure equation in vector form: $\vec{A}_{0} \mathrm{~A}+\overrightarrow{\mathrm{AB}}_{3}=\mathrm{A}_{0} \overrightarrow{\mathrm{~B}}_{0}+\mathrm{B}_{0} \overrightarrow{\mathrm{~B}}_{4}$
Loop closure equation in complex numbers: $a_{2} e^{i \theta_{12}}+a_{3} e^{i\left(\theta_{12}-\frac{\pi}{2}\right)}=a_{1}+a_{4} e^{i \theta_{14}}$
which boils down to $\mathrm{a}_{2} \mathrm{e}^{\mathrm{i} \theta_{12}}-\mathrm{ia}_{3} \mathrm{e}^{\mathrm{i} \theta_{12}}=\mathrm{a}_{1}+\mathrm{a}_{4} \mathrm{e}^{\mathrm{i} \theta_{14}}$
Real part of loop closure equation: $\quad s_{23} \cos \theta_{12}+a_{3} \sin \theta_{12}=a_{1}+a_{4} \cos \theta_{14}$
Imaginary part of loop closure equation: $s_{23} \sin \theta_{12}-a_{3} \cos \theta_{12}=a_{4} \sin \theta_{14}$

i. Let θ_{14} be input

a. First solve for s_{23} then θ_{12} :

Square (2.1) and (2.2) and add:
$\mathrm{s}_{23}{ }^{2}+\mathrm{a}_{3}{ }^{2}=\mathrm{a}_{1}{ }^{2}+2 \mathrm{a}_{1} \mathrm{a}_{4} \cos \theta_{14}+\mathrm{a}_{4}{ }^{2}$
yielding $s_{23}=\sigma \sqrt{a_{1}{ }^{2}-a_{3}{ }^{2}+a_{4}{ }^{2}+2 a_{1} a_{4} \cos \theta_{14}}$ where $\sigma= \pm 1$ corresponds to the two different closures of the mechanism.

To find θ_{12} let $\cos \theta_{12}=x_{2}$ and $\sin \theta_{12}=y_{2}$, substituting (1) and (2) into matrix form:
$\left[\begin{array}{cc}s_{23} & -a_{3} \\ a_{3} & s_{23}\end{array}\right]\left\{\begin{array}{l}y_{3} \\ x_{3}\end{array}\right\}=\left\{\begin{array}{c}a_{4} \sin \theta_{14} \\ a_{1}+a_{4} \cos \theta_{14}\end{array}\right\}$ from which $\theta_{12}=a \tan 2\left(x_{2}, y_{2}\right)$
The two closures of the mechanism are

b. First solve for $\boldsymbol{\theta}_{12}$ then \mathbf{s}_{23}

Using equations (2.1) and (2.2), (2.1) $\sin \theta_{12}-(2.2) \cos \theta_{12}$ yields
$a_{3}=a_{1} \sin \theta_{12}+a_{4}\left(\cos \theta_{14} \sin \theta_{12}-\sin \theta_{14} \cos \theta_{12}\right)$
rearranging yields $\left(a_{1}+a_{4} \cos \theta_{14}\right) \sin \theta_{12}-\left(a_{4} \sin \theta_{14}\right) \cos \theta_{12}-a_{3}=0$ which can either be solved by half-tangent substitution or phase angle method as presented before where the two solutions correspond to two closures of the mechanism.

To determine s_{23} corresponding to the selected closure (i.e. θ_{12}) rearrange (2.1) and (2.2) as:
$\mathrm{s}_{23} \cos \theta_{12}=\mathrm{a}_{1}+\mathrm{a}_{4} \cos \theta_{14}-\mathrm{a}_{3} \sin \theta_{12}=\mathrm{x}_{3}$
$\mathrm{s}_{23} \sin \theta_{12}=\mathrm{a}_{4} \sin \theta_{14}+\mathrm{a}_{3} \cos \theta_{12}=\mathrm{y}_{3}$
Multiply x_{3} by $\cos \theta_{12}$ and y_{3} by $\sin \theta_{12}$ to obtain:
$\mathrm{s}_{23}=\mathrm{x}_{3} \cos \theta_{12}+\mathrm{y}_{3} \sin \theta_{12}$
Please note that this final equation will be free of singularities of $\sin \theta_{12}$ or $\cos \theta_{12}$ being zero during full cycle analysis which are false singularities.

ii. Let θ_{12} be input

a. First solve for $\boldsymbol{\theta}_{14}$ then \mathbf{s}_{23} :

Using equations (2.1) and (2.2), (2.1) $\sin \theta_{12}-(2.2) \cos \theta_{12}$ yields
$a_{3}=a_{1} \sin \theta_{12}+a_{4}\left(\cos \theta_{14} \sin \theta_{12}-\sin \theta_{14} \cos \theta_{12}\right)$
rearranging yields $\left(a_{4} \cos \theta_{12}\right) \sin \theta_{14}-\left(a_{4} \sin \theta_{12}\right) \cos \theta_{14}+a_{3}-a_{1} \sin \theta_{12}=0$ which can either be solved by half-tangent substitution or phase angle method as presented
before where the two solutions correspond to two closures of the mechanism. Corresponding s_{23} can be found as presented in section 2.i.b to avoid mentioned false singularities.

b. First solve for \mathbf{s}_{23} then θ_{14} :

Sum of squares of (2.1) and (2.2) yields:
$s_{23}{ }^{2}-\left(2 a_{1} \cos \theta_{12}\right) s_{23}+\left(a_{1}{ }^{2}+a_{3}{ }^{2}-a_{4}{ }^{2}-2 a_{1} a_{3} \sin \theta_{12}\right)=0$ which is a quadratic in s_{23} whose two solutions correspond to two closures of the mechanism. To determine the corresponding θ_{14} to the selected closure (2.1) and (2.2) can be rearranged as:

$$
\begin{aligned}
& \cos \theta_{14}=\frac{s_{23} \cos \theta_{12}+a_{3} \sin \theta_{12}-a_{1}}{a_{4}}=x_{4} \\
& \sin \theta_{14}=\frac{s_{23} \sin \theta_{12}-a_{3} \cos \theta_{12}}{a_{4}}=y_{4}
\end{aligned}
$$

so $\theta_{14}=a \tan 2\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$
The two closures are:

iii. Let s_{23} be input (can be a piston or linear actuator)
a. First solve for θ_{12} then θ_{14} :

Rearrange (2.1) and (2.2) as:
$s_{23} \cos \theta_{12}+a_{3} \sin \theta_{12}-a_{1}=a_{4} \cos \theta_{14}$

$$
s_{23} \sin \theta_{12}-a_{3} \cos \theta_{12}=a_{4} \sin \theta_{14}
$$

Square these equations and add to obtain $\left(\mathrm{s}_{23}\right) \cos \theta_{12}+\left(\mathrm{a}_{3}\right) \sin \theta_{12}-\left(\frac{\mathrm{s}_{23}{ }^{2}+\mathrm{a}_{3}{ }^{2}+\mathrm{a}_{1}{ }^{2}-\mathrm{a}_{4}{ }^{2}}{2 \mathrm{a}_{1}}\right)=0$ which can either be solved by half-tangent substitution or phase angle method as presented before where the two solutions correspond to two closures of the mechanism. To determine the corresponding θ_{14} to the selected closure (2.1) and (2.2) can be rearranged as:
$\cos \theta_{14}=\frac{s_{23} \cos \theta_{12}+a_{3} \sin \theta_{12}-a_{1}}{a_{4}}=x_{4}$
$\sin \theta_{14}=\frac{\mathrm{s}_{23} \sin \theta_{12}-\mathrm{a}_{3} \cos \theta_{12}}{\mathrm{a}_{4}}=\mathrm{y}_{4}$
so $\theta_{14}=a \tan 2\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$
The two closures are:

