Syllabus

Course syllabus

Course Title	PHYS343 INTRODUCTORY COMPUTATIONAL METHODS FOR PHYSICISTS
Lecturers	Cenk Tüysüz, Berat Yenilen, Barış Malcıoğlu
Grading	Midterm %30, Term project %20, Attendance %10,Hands-on sessions & homeworks %40

Hands-On sessions

- Attendance to all of the hands-on sessions, and submitting the assigned hands-on work is mandatory. Any missed hands-on session, or assigned hands-on work will result in N/A grade. Only officially documented cases (such as medical reports) will be considered for exemption.
- In order to be able to attend hands-on sessions, the consent form (https://forms.gle/ALcnDc-JdTQGByBpK6) has to be filled beforehand. If you don't fill in and agree on the consent form, please drop this course.

Theoretical sections

Attendance to all of the theoretical sessions is not mandatory, however, an attendance above %50 will see a contribution to the final grade up to %10.

Tentative Course Contents

- Recap of Fundamental concepts of Quantum Theory
- Qubits operators & Measurement
 - Quantum operators
 - The Bloch Sphere
 - Measurement postulate
 - Quantum Circuit diagrams
- Complexity theory
- Other Computational Models for Quantum Computing
- A review of current hardware & software
 - Building and assessing
 - Neutral atom
 - NMR
 - NV Diamond
 - Photonics
 - Spin Qubits
 - Superconducting Qubits
 - $\circ \ \ {\rm Topological} \ {\rm Quantum} \ {\rm Computation}$
 - Trapped ion
 - Software libraries
- Teleportation, superdense coding, Bell's inequality
- Code walkthroughs

Term projects

- The term project is the final exam.
- There are two parts: Presentation (~20 minutes), Q&A session after the talk (~10 minutes)
- The presenter will be graded according to the scientific quality of the presentation
- The audience will be graded according to their participation in the Q&A session.
- The term projects will be presented in the last 3-4 weeks
- Attendance to the term project presentations is mandatory. The first missed week will result in a reduction of your final grade to %65. The second missed week will result in a reduction of your final grade to %35. If you miss three weeks, you will receive N/A grade.
- Only one missed week might be allowed with a valid official excuse.

Textbooks

- Qiskit textbook (https://forms.gle/ALcnDcJdTQGByBpK6)
- Jack D. Hidary, Quantum Computing: An Applied Approach
- Lecture notes from various sources on my webpage

Source (../_sources/PHYS343/syllabus.rst.txt)

© Copyright 2021, Tüysüz, Cenk; Yenilen, Berat; Malcıoğlu, O. Barış. Created using Sphinx (http://sphinx-doc.org/) 3.5.3.

Back t