
Module 7 – Loops, arrays, and lists.

One of the fundamental concepts in programming is loops. Loops enable us to repeatedly run a portion

of code as long as a specific condition is meet. Repetitive tasks are quite common (e.g., sending an email

to every individual in a list of 100 students) and loops help us save time to handle these task with

maximum efficiency. For example, when you see a list of products in a website or application, that means

probably some looping has been involved in the coding to iterate through these products and display

them properly.

We will cover 4 types of loops available in C#. To continue with the rest of this chapter, please create a

new project called Module7_1.

1) While loop

As its name suggests, while loop repeats a portion of code while the Boolean expression specified is

true. We will write an example code to test how while loop functions. Please add the following code

inside the Form1_Load method (see Figure 1).

Figure 1. While loop example.

In each iteration, while loop first evaluates the Boolean expression, and then executes the statements

inside the body of the loop if the Boolean expression is true. If it is false, then the program exists from the

loop and goes to the next line after the loop code block.

Considering the example given in Figure 1, in the first iteration the value of count will be 0. Since it is less

than 3, the Boolean expression will be evaluated to true. Therefore, the program will continue with

executing the statements inside the body of the loop. It will first run the code at line 27 to display the

current value of count, which is 0, and then it will run the code at line 30 to increase the value of count

by one (thus, its new value will be 1). The first iteration will be completed, and the program will continue

with line 24 to start the second iteration.

The second iteration will be the same as the first one, except that the value of count will be 1. Since it is

still less than 3 (that is the Boolean expression is evaluated to true), the program will again execute the

(1) Boolean expression is checked first.

Body of

the loop

(2) If the Boolean expression

is true, then the code

statements inside the body of

the loop are executed.

body of the loop. After printing its value, the program will increase the value of count by one and the

second iteration will be completed.

In the third iteration the condition will be still met since the value of count, 2, is still less than 3. At the

end of the third iteration the value of count will be 3.

In the third iteration, this time the Boolean expression will be false since the current value of count,

which is 3, is NOT less than 3. Therefore, the loop will be terminated, and the program will continue with

the next statement after the loop.

Please note that defining a counter variable (which is count in the example above) is essential in many

loops. Not only it helps to identify the number of iterations, but also it prevents infinite loops. Infinite

loops occur when the conditional statement is always met (thus Boolean expression is evaluated as true).

For example, in the code above, not incrementing the count variable would result in an infinite loop since

count would be always less than 3.

2) For loop

for loop is a more specified version of while loop. You may remember that in while loop, we defined

the count variable before the loop, and increased its value inside the loop body. Differently in for loops,

these tasks are performed inside a for header.

The code shown in Figure 2 uses for loop to perform the same operation that we did with while loop.

Figure 2. For loop example.

As shown in Figure 3, for loop header is composed of three expressions separated by a semicolon.

Figure 3. Components of the for header.

1. Initialization expression: This expression initializes a counter variable with an initial value. If the

counter variable were to be defined beforehand, it would still need to be assigned a value inside

the for header. This expression is evaluated ONLY ONCE before the first iteration starts.

2. Boolean expression: This expression controls if the statements inside the body of the for loop

should be executed or not. This expression is evaluated at the beginning of each iteration, and as

long as it is true, the body of the loop gets executed.

3. Update expression: This expression updates the value of the counter variable (generally,

increments its value), and is executed at the end of each iteration.

for header

Body of

the loop

initialization

Boolean
expression update

Lets’ go through how the for loop presented in Figure 2 will be executed in runtime. For the first time,

for header will be executed, in which count variable will be declared and set to 0 and it will be checked

if its value is less than 3. The update expression incrementing its value by 1 will NOT be executed initially.

Since 0 is less than 3, the body of the for loop will be executed and the count value, 0, will be displayed

in a popup window. At the end of the iteration, the update expression inside the for header will be

executed and the value of count will be incremented by 1. Please not that, here we used the ++ operator

to increment the value by one (count++), which is equivalent to the count = count + 1 expression.

At the beginning of the second iteration, only the Boolean expression will be executed inside the for

header, which will be true (since 1 is less than 3), and then the body of the loop will be executed, which

will print the current count value, 1. At the end of the iteration, the update expression inside the for

header will be executed and the value of count will increase to 2.

The third iteration will be executed in the same manner as the second iteration. The value of the count

variable, which is 2, will be printed as the output. At the end of the third iteration, count will be set to 3.

In the fourth iteration, the Boolean expression will be false (since 3 is not less than 3), and the body of the

loop will not be executed. The program will exit from the loop code block and continue with the next line.

3) Do-while loop

This loop is very similar to while loop, except that the conditional while statement comes at the end

after the body of the loop is executed first. That is, do-while loops are post-test whereas for and while

loop are called pre-test loops. The Figure 4 shows how to use do-while loop to print the numbers from

0 up to 3.

Figure 4. Do-while loop example.

The code will produce the same output as the while and for loops. The only difference is that, if the

count variable was set to 3, the body of the loop would be executed and the value of 3 would be printed

out, which would not be possible with the other loops.

Although it is very rare to have a specific case where you are obliged to use do-while loop, you may

need it if you have to run the body of the loop at least once before the Boolean expression is checked in

the while header.

4) Foreach loop

Body of

the loop
while header

The last type of loops is the foreach loop, which is very useful and efficient in iterating a list of variables

or objects. The number of iterations in foreach loop is determined by the length of the list. If the list has

10 items, there will be 10 iterations. A counter variable is NOT necessary.

Figure 5 shows an example code of foreach loop, where it iterates through a string array, called

fruits, holding 4 items. Soon, we will learn about arrays. For now, we will focus on the loop.

Figure 5. For each loop example.

Starting from the first item, fruits[0], which is stored at the 0 index, foreach loop iterates through

the fruits array until the last item (which is fruits[2]) in the list is reached. The body of the loop is

executed at each iteration. Although this foreach loop can be translated into for loop (see Figure 6), I

recommend you use foreach loop when iterating through a list of values.

Figure 6. Using for loop to iterate through the fruit array.

In the next sections, we will cover arrays and lists and further practice how we can use loops to iterate

through list objects.

5) Array objects

So far we have used variables to store values (or data) in the memory. One limitation of variables is that

they can hold only one value at a time. Each time you assign a value to a variable, the previous value is

replaced and cannot be recovered. Often we need to store and process a list of values. Imagine that our

program needs to calculate the final grade for 100 students based on their exam scores. It is impractical

to create variables one by one for each student and perform calculations over and over again.

One option to store a set of values is array. Arrays can hold a group of values that have the same data

type. For example, we can have a string array or an int array, but we cannot define an array that holds

a mix of string and int values.

In the 1st iteration fruit is set to fruits[0],
In the 2nd iteration fruit is set to fruits[1],
In the 3rd iteration fruit is set to fruits[2].

Figure 7 provides an example code about how to declare arrays. In the first example, an empty string

array with the size of 3 (i.e., it can hold up to 3 values) is created using the new keyword, and the first

element is set to “Apply”. Please note that in C# arrays are zero-based. This is why the index of the first

element is 0. The second line declares an empty int array with the size of 2. Since, it can hold two values,

the first element will be at index 0 while the second element will be stored at index 1. The value of the

second element is set to 15.

Figure 7. Declaring string and int type arrays.

Arrays are reference type objects. When you define an array as in Figure 7, it is created and stored in the

memory and a reference to this array object is returned (instead of the object itself). For example,

numbers variable holds the reference (address) value to access the array object in the memory. This is

different than the value type variables we have used so far.

6) Value type vs reference type variables

In C#, variables are divided into two categories based on their data types: value type and reference type

variables. The int, string, double, decimal, and float variables we have used so far in this course are value

type variables. When a value type variable is declared, a part of memory (e.g.,4 byte if it is an int variable)

is allocated to store the value of the variable. For example, if you define an int variable with a value of

500, a specific portion in the memory will be located to store this value as illustrated in Figure 8.

Figure 8. Location assigned in the memory for total variable.

On the other hand, reference type variables work totally different. Reference type variables holds a

reference (address) to the object stored in the memory. In other words, they do not store the object itself,

but the address of the object stored in the memory. Therefore, when assigning a reference variable to

another one, you will not copy the data but the reference which refers to the same location in the

memory. For example, arrays are reference types, and when they are created in the memory, a reference

to their location in the memory is returned and stored in the reference variable as illustrated in Figure 9.

500

int total=500;

Memory

int [] numbers = new int[4];

Figure 9. Location assigned in the memory for the array object.

7) Indexing in arrays and the length property

As you might notice from the examples above, a specific element inside an array is accessed and updated

through the index indicated inside square brackets. As shown in Figure 10, please declare the numbers

array with size of 4. Then, assign a value to each of the element in the array as indicated in Figure 10.

Figure 10. Definition and initialization of the numbers array.

Figure 11 shows the elements stored inside the number array.

Figure 11. The elements of the number array.

Since arrays follow zero-based indexing, the last element in an array is always accessible through the index

equal to the length of the array minus 1. For example, the last element of the numbers array is at index

3, which is one less than its size. Sometimes, you may not remember the size (or length) of an array. You

can use the Length property to know how many elements an array can hold. The following code in Figure

12, prints the last element of the numbers array.

Figure 12. Printing the last element of numbers array.

You can actually initialize an array with a set of values if you already know what initial values the array

should have. The syntax for initializing the numbers array with some values is shown in Figure 13.

Figure 13. Initializing the numbers array with a set of values.

Memory

numbers holds the
reference to the
array object.

10 20 30 40

numbers[0] numbers[1] numbers[2] numbers[3]

[array object]

When initializing an array with a set of values, you do not need to specify either the new keyword or the

size of the array. The size of the array is automatically set to the number of items in the list of values

assigned to the array. In the example above, the size of the array will be 4.

8) Duplicating and comparing arrays

Copying an array is not very straightforward. Since an array is an object and we define a variable to store

reference to that object in the memory. When we assign this variable to another, we actually copy the

reference, not the array object itself.

In the code shown in Figure 14, first an array object which holds 4 values is created and then the reference

to this array object is set to luckyNumbers. When, we assign the value of the luckyNumbers variable

to backupNumbers, we actually pass the reference value not the array object. Therefore, if we perform

any changes on backupNumbers, we actually manipulate the same array object in the memory, as

illustrated in the figure.

int[] luckyNumbers = {2, 15, 33, 8};

int[] backupNumbers = luckyNumbers;

backupNumbers[2] = 30;

Figure 14. luckyNumbers and backupNumbers share the same reference to the array object.

To duplicate an array, first you need to create a new empty array object in the memory. Then, you should

iterate through the original array and copy its individual elements one by one to the new array at each

iteration. Obviously, we need to use a loop to do this. Figure 15 shows how to duplicate the luckyNumbers

array using for loop.

Figure 15. Using for loop to duplicate the luckyNumbers array.

How about checking if two arrays are identical? You may remember that we use the == operator to check

if two variables hold the same value or not. Unfortunately, this won’t work for arrays which are reference

types. For example, the code below will compare the reference values of luckyNumbers and

backupNumbers arrays, not their contents, and the if conditional statement will always return false.

int[] luckyNumbers = {2, 15, 33, 8};

 2

[array object]

15 33 8

30

int[] backupNumbers = {2, 14, 30, 8};

if(luckyNumbers == backupNumbers){

 MessageBox.Show(“Equal!”);

}

To check if the two arrays are equal, we need to first check if they have the same number of elements. If

this is true, then we need to iterate through the array to check if the elements at the same index are the

equal or not. If there are any mismatches, we should return false.

The code provided in Figure 16 uses for loop to compare two arrays. After defining the arrays, at line 30

we define a bool variable, areEqual, which will be used throughout the code to signal if the arrays are

equal or not. At lines 32-33 we check if the arrays have the same length, if not, we set areEqual to false.

Then, if areEqual is true (line 35), that is the arrays have the same size, we use for loop to iterate through

the arrays. At each iteration, we check if the values stored in the same index of two different arrays are

equal (line 39), and if not, we set areEqual to false (line 41).

Figure 16. Using for loop to compare arrays.

Please note the break statement at line 42. break will exit the loop immediately without running any

further iterations and the program will continue with the next statement after the loop. Here, we use

break because we do not need to iterate through the whole array once we find any mismatch. Between

lines 47-54, we use if-else to print a message whether the arrays are equal or not.

The code in Figure 17 shows how to use while loop to compare the arrays. With while loop, the code is

cleaner and simpler since we do not have to use if or break statements. It seems that while loop is a

better choice for this task. Sometimes, it is important to try out different options to figure out which one

is more efficient in terms of performance.

Figure 17. Using while loop to compare arrays.

9) The list collection

As a strong alternative to arrays, C# provides the List collection. List is actually a .Net framework class,

and any objects you create from this class will be a List type. A List object has many advantages over

an array since it automatically expands or shrinks as new items are added or removed from it. List objects

can hold any value types or objects. For example, the following lines of code create two types of List

objects, referenced by studentEmailList and studentGradeList, one holds strings while the other one

holds integers.

List<string> studentEmailList = new List<string>();

List<int> studentGradeList = new List<int>();

Please not that, following the List keyword inside the angle brackets, we define the data types that the

List will hold, such as <int> or <string>.

You can also set some initial values to a List object when you first time declare it. The following code

shows an example:

List<int> studentGradeList = new List<string>() {85, 90, 85};

To add items to a List, you can use its Add method. For example, the following code create a list object

to store some names, and then we add three names to the List.

List<string> names = new List<string>();

names.Add(“Kerim”);

names.Add(“Gustavo”);

names.Add(“Florian”);

The items in a List are stored at specific indexes as in arrays. The first item (“Kerim”) is stored at index

0, the second item (“Gustavo”) is stored at index 1, and the third item (“Florian”) is stored at index 2. As

we did in arrays, you can use these indexes to access a specific value in a List. For example, names[0]

will return the value of “Kerim”.

The following code uses a for loop to print each item in the names list:

List<string> names = new List<string>();

for (int index = 0; index < names.Count; index++)

{

 MessageBox.Show(names[index]);

}

Please note that, in the for statement, we need to ensure that the index value is within the boundaries

of the List size by checking that index is less than the size of the List. For that purpose, we used the

Count property, which returns the number of items that a List holds.

Different from the Add method, which always appends the new item to the last index of the List, we

can use the Insert method to add an item at a specific index. In the following example, we insert “David”

as the first item in the List using index 0.

names.Insert(“David”, 0) //{“David”, “Kerim”, “Gustavo”, “Florian”}

To remove an item from a List object, we can use two methods: RemoveAt(), which removes an item

at a specific index, or Remove() which removes the item that matches the provided string. The following

code provides examples for these methods:

names.RemoveAt(0) //{“Kerim”, “Gustavo”, “Florian”}

names.Remove(“Florian”) //{“Kerim”, “Gustavo”}

The Remove method returns true if the indicated value exists in the List and returns false otherwise.

For example, the code below will remove “Florian” if exists in the names list, otherwise, it will print a

message to inform the user that the item was not found.

 if(!names.Remove(“Florian”))

 {

 MessageBox.Show(“This item was not found.”);

 }

We can check if a List contains a specific item by using the IndexOf() method. This method returns

-1 if the item was not found in the List. Otherwise, it returns the index of the item in the List. The

following code searches for “Kerim” in the names list and prints its index if found. The user is informed if

the item is not in the list.

int position = names.IndexOf(“Kerim”);

if(position == -1){

 MessageBox.Show(“This item was not found.”);

}

else

{

MessageBox.Show(“The item was found at index ” +

position.ToString());

}

10) Programming exercise

We will end this chapter with a programming exercise in which we will develop an application that prints

student names in two sections of a course inside a list box.

First, we will build the interface. For this, please switch to the design view and add a listbox control and

under it, add a button control, as shown in Figure 18. Please name these controls properly.

Figure 18. The design of the form.

Our goal is, when clicked on the button, to populate the list box with student names divided by the

sections as shown in Figure 19.

Figure 19. Sample output of the application.

Therefore, the code should go inside the click event handler of the button control. Create the event

handler as shown in Figure 20.

Figure 20. Empty click event handler.

Next, we will generate our data. Our data will be consisted of two string arrays initialized with the

following sets of values:

 string[] section1 = { "Fatma", "Hakan", "Furkan" };

 string[] section2 = { "David", "Gustavo", "Alonso" };

Then, we will create List object named sections that can hold string[] type. Next, we will add the
section1 and section2 arrays to the List object:

 List<string[]> sections = new List<string[]>();

 sections.Add(section1);

 sections.Add(section2);

The click event handler should have the code shown in Figure 21.

Figure 21. Click event handler with data generation code.

We need to iterate through the list object, and for each section array stored in this list, we need to
iterate through the student names. That is, we need to implement nested loops: outer loop will go through
the content of the sections list, while the inner loop will go through the elements inside the

section1 and section2 arrays.

Let’s use for loop for the outer loop which will iterate through the sections list as shown below:

for (int index = 0; index < sections.Count; index++)

{

 int sectionNo = index + 1;

lst_studentsBySections.Items.Add("--Section " +

sectionNo.ToString() + "--");

}

At each iteration, we need to add the section number which will be one more than the index value: that
is, 1 if the index is 0, and 2 if the index is 1. We use the Items.Add method of the listbox to add new items
to the list.

If you run your application and click the button, you should obtain the following output shown in Figure
22.

Figure 22. Displaying the sections in the listbox.

Now, we can implement the inner loop. Let’s use foreach loop this time. Inside the outer loop, we can

access to each section element stored in the list through sections[index].

In the first iteration of the outer loop, where index will be 0, sections[0] will return the values of {
"Fatma", "Hakan", "Furkan" }. In the second iteration, where index will be 1, section[1]
will return the values of { "David", "Gustavo", "Alonso" };

Below, you can see the implementation of the foreach loop inside the for loop. At each iteration of
foreach, we add student names to the listbox.

for (int index = 0; index < sections.Count; index++)

{

 int sectionNo = index + 1;

lst_studentsBySections.Items.Add("--Section " +

sectionNo.ToString() + "--");

foreach (string student in sections[index])

{

lst_studentsBySections.Items.Add(student);

}

}

If you test your application again, you should obtain the following screen shown in Figure 23.

Figure 23. Displaying the sections and students in the listbox.

