
Module 8 – Strings and Chars.

Often in programming, we need to process text data (or strings). A common example is a program that

requires a password with certain requirements, such as containing at least one number, special character,

and a capital letter. To write such a program, we would need to properly process the possible password

provided by the user to make sure it meets these requirements. In this chapter, we will learn about

processing textual data. C# offers many tools and techniques for this purpose, which are the focus of this

chapter.

To continue with the rest of this chapter, please create a new project called Module8_1.

1) The char data type

char is a special data type that is used to define variables to store individual characters, as opposed to

the string data type which is used to store text. You may remember that to assign a value to a string

data type, we use double quotation marks. For char type, we enclose the values inside single quotation

marks as shown below:

char letter = 'a';//for chars, only single quotaion marks are allowed

//since strings CANNOT be assigned to a char type
char letter = "a";//this will throw an error

As you can see in the code above, strings cannot be assigned to char type variables (even though if they

hold a single character as in the example). string and char are treated as different data types. We can

convert a char variable to a string using the ToString() method. For example, the following statement

converts the letter variable to a string and assigns to the Text property of a label control, named

lbl_message.

lbl_message.Text = letter.ToString();

2) Strings as arrays of characters

In C#, a string type variable can be treated as an array of characters. Below, we define a string called

firstName initialized with “Alonso”. C# allows us to process strings as if they were arrays.

string firstName = "Alonso"; //['A', 'l', 'o', 'n', 's', 'o']

We can indicate the index inside square brackets [] (also called subscript) to access a specific characters

inside a string. To access the first character, we need to use index 0, to access the second character, we

need to use index 1, and so forth. For example, the statement below assigns the first letter of the

firstName variable to a char variable, firstLetter.

char firstLetter = firstName[0];

Since a string can be treated as an array, we can use loops to iterate through the characters of the string.

The following code shows an example in which a comma is placed after each letter of the firstName

variable, and the resulting string is added to the Text property of lbl_message.

foreach(char letter in firstName)
{
 lbl_message.Text += letter.ToString() + ", ";
}

Please not that square brackets [] gives only a read-only access, and it CANNOT be used to replace an

existing character inside a string.

firstLetter[0] = 'B'; //will throw an exception

3) Testing a value of a character

Sometimes, we need to check if an individual character in a string is a (uppercase/lowercase) letter, or a

number, or a punctation mark. C# provides a variety of methods to check the type of a character.

To begin with, char.IsDigit is used to check if a character is a digit (0-9). It returns true if the character

is a digit; otherwise, it returns false. Below is an example testing if the 3rd character of a string is a digit:

string id = "TC12345";

//checking if the 3rd char is a digit
if (char.IsDigit(id[2]))
{
 //Statements to be executed
}

Alternatively, we can pass the whole string variable along with the index of the character that we want to

test, as shown below:

string id = "TC12345";

if (char.IsDigit(id, 2)) //the string variable, and the index
{
 //Statements to be executed
}

We can also check if a character is a letter. To do that, we need to use the char.IsLetter method. The

syntax of this method is the same as the char.IsDigit method. Below is an example:

string id = "TC12345";

//checking if the 1st char is a letter
if (char.IsLetter(id[0])) //alternative call -> char.IsLetter(id, 0)
{
 //Statements to be executed
}

There are some other methods to test for the value of a char type. They are listed in the table below. All

of these methods return true or false.

Method Explanation Examples
char.IsLetterOrDigit Returns true only if the

character is either letter or
a digit.

char.IsLetterOrDigit(‘a’);

char.IsLetterOrDigit(“ab”, 0);

char.IsLower Returns true if the
character is a lowercase
letter.

char.IsLower(‘a’);

char.IsLower(“Ab”, 1);

char.IsPunctuation Returns true if the
character is a punctation
mark.

char.IsPunctuation(‘a’);

char.IsPunctuation(“ab!”, 2);

char.IsUpper Returns true if the
character is an uppercase
letter.

char.IsUpper(‘a’);

char.IsUpper(“Ab”, 0);

char.IsWhiteSpace Returns true if the
character is a whitespace
character (e.g., tab,
space).

char.IsWhiteSpace(‘a’);

char.IsWhiteSpace(“a b”, 1);

We will develop a simple password-requirements checking application to make proper use of these

methods. First, we will build the interface shown in Figure 1.

Figure 1. Interface of the application.

As you can see in Figure 1, there are four requirements for a valid password entry. We will create a method

to check for each of these requirements.

First, let’s create a method called CheckLength to test if the password has the require0d length. This

method will return false if the password has less than 8 characters; otherwise, it will return true. The

definition of this method is provided in Figure 2.

txt_password

btn_checkPassword

Figure 2. Definition of the CheckLength method.

The if condition inside this method can be shortened by directly returning the Boolean expressions as

shown in Figure 3.

Figure 3. An alternative definition of the CheckLength method.

Now, we will define the CheckUpperCase method, which will return true only if the number of uppercase

letters in the password is equal to 2 or more. We will use foreach to iterate through the password string.

Figure 4. Definition of the CheckUpperCase method.

Next, we will define the CheckLowerCase method, which will return true only if the number of lowercase

letters in the password is equal to 3 or more. We will use for to iterate through the password string.

Figure 5. Definition of the CheckLowerCase method.

Last, we will define the CheckDigit method, which will return true only if the password contains at least

1 digit. We will use foreach to iterate through the password string. See Figure 6 for the definition of the

method.

Figure 6. Definition of the CheckDigit method.

Now, please create a click event handler for the button. The methods we created above will be executed

when the user clicks on the btn_checkPassword button, all method calls should go inside its click event

handler. We will use nested if-else statements to check of each requirement (by calling the corresponding

method). If any of the requirements is not met, we will print an error message. Only if all the requirements

are met, we will print “Password is valid” message. See Figure 7 for the complete code.

Figure 7. Click event handler.

4) Working with substrings

Substring is any string within another string. string objects in C# comes with several handy methods to

search specific substrings. These methods are:

• Contains : This method returns true if a string contains a string or char value.

• StartsWith : This method returns true if a string starts with a specific string or char value.

• EndsWith : This method returns true if a string ends with a specific string or char value.

The following code shows the use of these methods in action.

string title = "Learning C Sharp";

if (title.Contains(“C”)) //returns true
{
 //Statements to be executed
}

if (title.StartsWith(“Learn”)) //returns true
{
 //Statements to be executed
}

if (title.EndsWith(“Harp”)) //returns false
{
 //Statements to be executed
}

5) A quick look at Anonymous Methods and Lambda Expressions

The examples above search a string inside another string. Often, we need to search through a list of items

and filter them based on their match with a keyword. One example can be searching for users based on

their names. Below is a definition of a list type variable named users, with some initial values.

List<string> users = new List<string>() { "Onur", "Kerim", "Yannis", "Aynur", "Kerem" };

We want to search the users whose names start with K and save the search result in a list object named

searchResult, as shown below.

 List<string> searchResult = new List<string>();

To find the target users, we will use a loop to traverse through the users list and add them to

searchResult if they satisfy the search condition. Below is the code to achieve this operation.

foreach(string name in users)
{

if (name.StartsWith("K"))
searchResult.Append(name);

}

Indeed, list objects offers the Where method to filter a sequence of values based on a predicate. A

predicate represents a method that checks whether the parameter provided meets some criteria (e.g., if

the string starts with K). A predicate method takes one input parameter and returns a Boolean value: true

or false. Below, we define a very simply predicate method, called StartsWithK, that returns true if the

provided string parameter starts with K:

private bool StartsWithK(string name) { return name.StartsWith("K"); }

We can pass StartsWithK to Where method attached to users list object, as shown below:

users.Where(StartsWithK);

Where method will execute the StartsWithK method for each single item in the users list and keep

those items for which StartsWithK returns true. We need to convert the resulting object to list by using

ToList method and assign the whole expression to searchResult.The complete code is shown below:

searchResult = names.Where(StartsWithK).ToList();

Instead of defining the Predicate method separately, we can define an anonymous method using the

delegate keyword. To simplify the process, we can actually place the definition of StartsWithK inside the

Where method directly, as shown below:

names.Where(delegate (string name) { return name.StartsWith("K"); })

This will function the same way; but it reduces the complexity since it helps achieve the same functionality

with less code. Anonymous methods do not have a name and they are just created and used for an instant

need. Therefore, they are not accessible in any other place in your code.

We could even simplify our code with the help of Lambda Expressions. After introduced with C# 3.0,

Lambda Expressions supersede Anonymous functions because of their simplicity.

searchResult = names.Where(name => name.StartsWith("K")).ToList();

In the Lambda Expression, we use a notation (=>) pronounced as “Goes To”. So, on the left hand-side

of => we have our input parameter. The lambda expression can infer that the input parameter (whatever

its name is) is a string type because Where clause is applied to a list of string objects. The right hand-side

of => is the function that evaluates the input parameter based on a condition that returns true or false.

6) Modifying strings

To modify the contents of strings, C# provides various methods:

• Insert adds a string into another string at the specified index.

• Remove removes part of a string starting from indicated index.

• ToLower converts a string to all lowercase characters.

• ToUpper converts a string to all uppercase characters.

• Trim removes all spaces that appear at the beginning and at the end of a string,

• TrimStart removes all spaces at the beginning of a string.

• TrimEnd removes all spaces at the end of a string.

Example use of these methods are provided below:

"erkan".Insert(0, "S"); //output: Serkan
"erkan".Remove(2); //output: er
"erkan".Remove(2, 1); //output: eran
"Erkan".ToLower(); //output: erkan
" erkan ".Trim(); //output: “erkan”
" erkan ".TrimStart(); //output: “erkan “

" erkan ".TrimEnd (); //output: “ erkan“

You might notice that to remove a specific substring from a string we need to know the index of the

substring since Remove method only accepts an index parameter. We can use IndexOf method to get the

index of a specific substring or a character. If the searched substring does not exist, this method returns -

1. Below is an example. In this example, we want to delete the ☑ character inside a name. To remove it,

we first need to get its index by using IndexOf method. Next, we want to add the ❌character to the end

if the name does not already contain it.

 string name = "Erkan☑";

 int index = name.IndexOf("☑");

 if (index != -1)
 {
 name = name.Remove(index);
 }

 if (!name.Contains("❌"))

 name = name.Insert(name.Length - 1, "❌");

7) Splitting strings into substrings

Sometimes a string can contain multiple values that are separated by a delimiter. Birthdates are good

example for such strings. For instance, 14-08-1984 contains day, month, and year information separated

by – delimiter. To access the month information, we need to first split the string into smaller chunks. For

this purpose, we can use the Split method, which accepts the delimiter character as the parameter. Split

method extracts each piece of data separated by the delimiter and returns these pieces inside a string

array. Below is the code to split the date string:

string date = "14-08-1984";
string [] dateParts = date.Split("-");

14 will be stored in index 0, 08 will be stored in index 1, and 1984 will be stored in index 2 of dateParts

array. That is, dateParts[0] will return 14, dateParts[1] will return 08 and dateParts[2] will

return 1984.

Another good example where you may need to use Split method is when you have some comma

separated values (CSV). Below is gradeStr that holds a list of grades separated by comma.

string gradesStr = "95,78,87,93,100,83,75,79,66,88";

We want to find out how many students achieved a grade higher than 80. To do some math operations,

we need to first extract the grades from the string. The following code will save each grade item inside

the grades array.

string[] grades = gradesStr.Split(',');

Now, we can write a loop to traverse through string grade values and increase the count variable

whenever the grade is greater than 80. The details of the implementation are provided below.

int count = 0;
foreach(string g in grades)
{
 if(int.TryParse(g, out int grade))
 {
 if (grade > 80)
 count++;
 }
}

If we copy the grades array to a list, we can complete this operation in shorter way. Below code copies

the array to a list object named gradeList.

string gradesStr = "95,78,87,93,100,83,75,79,66,88";
string[] grades = gradesStr.Split(',');
List<int> gradeList = new List<int>();

foreach (string g in grades)
{
 if (int.TryParse(g, out int grade))
 {
 gradeList.Add(grade);
 }
}

Once we have the gradeList object ready, we can call its Count method. Count will return the number of

items in the list. Inside Count, we can write the lambda expression to filter the results, as shown below:

gradeList.Count(grade => grade > 80);

