Module 9 — Introduction to the Classes and Objects.

C# is an object-oriented programming languages. That means, coding in C# involves creating many objects
and using their properties and methods to perform some operations. For example, all controls (e.g., label,
textbox, button, etc.) that we have used to design forms are actually objects. Lists are also another great
example of the objects we used so far. To be able to create and use objects of a particular type, a class
must be created. Below is the definition of a list object called names. If you mouse over the List keyword,
a tooltip window will appear, where you can see that List is a class.

List<string> = new List<string>();

#z class System.Collections.Generic.List< T>
Represents a strongly typed list of objects that can be accessed by index. Provides methods to search, sort, and manipulate lists,

T is string

Figure 1. Defining names list object.

While the cursor is inside the List keyword, press F12 to view the definition of the List class. Its definition
is quite long, and Figure 2 shows only part of it. You may remember that we used some properties (e.g.,
Count) and methods (Add, Clear, Contains) for List objects. They are all created in the definition of the
List class as you can see in Figure 2. Any object created from List class, will have the same set of
properties and methods as defined in the class declaration.

[:]public class pist<'> : ICollection<T>, IEnumerable<T®, IEnumerable, IList<T», IReadOnlyCollection<T3,
{

public |Listi():

public List(IEnumerable<T>» collection);

public Lisf(int capacity);

public T this[int index] [:]
public int Count { get; }
public int Capacity { get; set; }

public void Add{T item)};

public void AddRange(IEnumerable<T»> collection);

public ReadOnlyCollection<T» AsReadOnly();

public int BimarySearch(int index, int count, T item, IComparer<T:>? comparer);
public int BinarySearch(T item);

public int BimarySearch(T item, IComparer<T:? comparer);

public void Clear();

public bool Contains(T item);

public List<TOutput> ConvertAll<TOutput>{Converter<T, TOutput> converter);
public void CopyTo(T[] array, int arrayIndex);

public void CopyTo(T[] arrayv);

public void CopyTo(int index, T[] array, int arrayIndex, int count);
public bool Exists(Predicate<T> match);

public T Find(Predicate<T> match);

public List<T» FindAll{Predicate<T» match);

public int FindIndex(int startIndex, int count, Predicate<T> match);
public int FindIndex(int startIndex, Predicate<T» match);

Figure 2. Definition of List class.

The goal of this chapter to introduce the classes. To continue with the rest of the activities, please create
a new project called Module9_yourName.

1) Creating classes in C#

Classes determine the characteristics of objects in terms of the data that objects can hold (fields and
properties) and the actions that objects can perform (methods). Imagine that you want to create circle
objects in your program. For this, it is better you create a class named Circle.

We will define the Circle class. Before we do that, we will create a new folder named Model. | recommend
adding all classes to this folder since by creating the classes we are actually building the model of our
program. To create a new folder, please right click on the project name in the solution explorer. A popup
menu will appear. Choose Add -> New Folder as shown in Figure 3.

Solution Explorer Rebuild
fal 42 Clean
Search Selution Exj Analyze and Code Cleanup 4
3] Solution ‘Mot Pack

4 [Module8| @ pypish..
b & Depen
bS] Formi Scope to This
b Progra New Solution Explorer View

¢® Edit Project File

Add P 4T New ltem... Ctrl+ Shift+A
‘B Manage NuGet Packages... *a Edisting ltem... Shift+Alt+A

Manage User Secrets # Mew Folder

Remove Unused References... % Machine Learning

L} Set as Startup Project
Debug 4

Project Reference...

Shared Project Reference...

o Cut Ctrl+X COM Reference...
Figure 3. Adding a new folder to the project.

Last, please name the folder as Model. Your Solution Explorer window should look similar to Figure 4.

I Solution Explorer X
@A o-2am p-
Search Solution Explorer (Ctrl+;) P -

31 Solution 'Module®_home' (1 of 1 project)
4 Module8_home
b @ Dependencies
Model
I] Forml.cs
B ©* Program.cs

Figure 4. Naming the new folder.

Now that we have the Model folder created, we will create a new class file named Circle. To do that,
please right click on Model folder, choose Add and then Class from the popup menus. This process is
visualized in Figure 5.

Solution Explorer 4 E_ﬂ
mil = @ Forml() A -2 aE| - g
Search Selution Explorer (Ctrl+;) P 'E
5] Solution 'Moduled_home' (1 of 1 project) §
4 Module8_home ©
P &l Dependencies =
Ml 2
1 New ltem... Ctrl+Shift+4 Add 4
3 Existing Item... Shift+Alt+ 4 Scope to This
¥ New Folder MNew Solution Explorer View
“# Machine Learning Exclude From Project
%8 Form (Windows Forms)... ‘}f:, Cut Ctrl+X
T1 User Control (Windows Forms)... ! Copy Ctrl+C
1 Component... X Delete Del
e Class... Rename F2
New EditorConfig 0! Copy Full Path
¢ Open Folder in File Explorer
Open in Terminal
y Properties Alt+Enter

Figure 5. Adding a new class to Model folder.

A dialog window should appear where you need to enter a name for the class file. We will name our class
as Circle as shown in Figure 6.

Add New lterm - Module8_home ? *

Sort by:|De‘Fau|t '| &
c#

.‘I_;l Class

Interface

4 |nstalled Search (Ctrl+E) P~

4 Visual C# ltems
Code
Data
General
B Web
Windows Forms
I ASP.MET Core

Visual C# Items Type: Visual C# ltems

An empty class definition
Visual C# ltems

Form (Windows Forms) Visual C# ltems

50L Server

b Online

Gl Il i 1 P

|
o
3

] 78 B2l [

User Contrel (Windows Forms)

Component Class

About Box (Windows Forms)

Application Configuration File

Application Manifest File (Windows Only)

Assembly Information File

Bitmap File

Code Analysis Rule Set

Code File

urene Fila

Visual C# ltems

Visual C# ltems

Visual C# ltems

Visual C# ltems

Visual C# ltems

Visual C# ltems

Visual C# ltems

Visual C# ltems

Visual C# ltems

-
Vienal 2 Farar

Jcict

Name:

Add

Cancel

Figure 6. Creating a new class named Circle.

After pressing the Add button, you should have the Circle.cs (which is the source code file of the class)
added inside the Model folder. The source code file will be automatically opened as seen in Figure 7 below.

[Circlecs = x R O S RN o'.tion Explorer -~ X
Moc!.uleg_home = | "%, Module_home.Model.Circle m -El YG) - 3 & r@ }, -
2 Search Solution Explorer (Ctrl+;) P~

3 2] Solution 'Module8_home' (1 of 1 project)
a Pl Module8_home

=1 = namespace Moduled_home.Model b &0 Dependencies
E —: class Circle = Model

- B b e Circlecs
: 5 P ES] Forml.cs

18 ¥ P ©* Program.cs

Figure 7. Circle class is created.

Initially, your class will be empty, meaning that it will not have any properties or methods defined. As
shown in Figure 8, class definition basically consists of a header and body. In header class keyword is
accompanied with the name of the class (e.g., class Circle). You should always use uppercase for the
first letter of the class name.

Class header
e

class Circle

Class body

Figure 8. Class definition.

Once a class is defined, you can create new objects from that class. For example, in the following code,
we create two Circle objects:

Circle smallCircle = new Circle();
Circle bigCircle = new Circle();

2) Defining class properties

The Circle class is now empty, and we will define it. A class definition consists of properties (and fields)
and methods. A property defines a specific characteristic of a class and holds data pertaining to that
characteristic. For example, a Label control has a Text property that is used to determine what text the
label should display, or ForeColor property to change the font colour.

We will define a diameter property for the Circle class. A property works in conjunction with a field. Field
holds the value for the object, while property allows us to set or get the value of the field. A property
contains two special types of methods, called accessors, which are get and set. While get is invoked
when we read the property value, set is called when we assign a new value to the property.

A field is always defined as private and should not be accessible outside the class. Since they hold critical
data about objects, allowing direct access to them is not recommended. This is a common case, and you
should follow it (although it is possible to define them as public). Encapsulating them inside the accessor
methods, provides a more secure and effective control over the private fields.

The code below shows how to define a property, called Diameter, for the Circle class. We first define a
private field, which holds the value for this property. Typically, the field name is determined by appending
_infront of the property name. In our case, the field name will be _diameter. Then, the Diameter property
is defined using set and get accessors. While get returns the _diameter field, set will update the
_diameter field with some value.

class Circle

{

private int _diameter;

.. . value is an “implicit” parameter because it is
public int Diameter P P

{ automatically created by the compiler. It carries the
get { return _diameter; } data type of the property. In this case, the value

set { _diameter = value; } parameter’s data type is int .

}
}

Now, we can create objects from the Circle class. The code at line 24 in Figure 9 creates a Circle object
called innerCircle. “Circle innerCircle” is the expression on the left hand-side of “=”. This
declares a variable that will hold a reference to the object. new Circle () isthe expression on the right
hand-side of =", which creates the innerCircle object in the memory and returns a reference to it by
calling the constructor of the class using the new keyword. We will cover constructors soon in this module.

When you place a dot next to the object name (see line 26 in Figure 9), you should be able to see the
property name called Diameter displayed in a list, but not the _diameter field. This is because the
Diameter property was declared as public, whereas the _diameter field was declared as private. Private
class members are NOT accessible through the objects.

22 - private void Forml_Locad(object sender, EventiArgs p)
23 {

24 Circle innerCircle = new Circle();

254" ir1r1-.=:r‘[:'|.r‘cle.’v

_E A Diameter int Circle.Diameter { get; set; }
- H 6 Equals

_: @ GetHazhCode

::. @ Getfype

:u @ ToString

32 R

Figure 9. Class definition.

After creating the innerCircle object, we will set the value of the Diameter property to 5. To do that,
we basically use the assignment operator =. This is similar to setting a new value to the Text property of a
label or textbox, which we have repeated many times. Next, we will print the Diameter value of the
innerCircle object using MessageBox.Show method. The code necessary to perform these operations
is provided below in Figure 10.

private void Forml_Load(ocbject sender, Eventirgs p)

{

Circle innerCircle = new Circle();

f/setting a new value
innerCircle.Diameter = 5;//this will trigger set accessor

f/Accessing the existing value

MessageBox.Show(innerCircle.Diameter.ToString());//this will trigger get accessor

Figure 10. Using the Diameter property of the innerCircle object.

You can create as many new object as you want using the Circle class. All these objects would have a
Diameter property, which can have a different value for each distinct object.

We will test how our program functions by adding some breakpoints. First, please add the following
breakpoints inside the main source code file.

24
25
26
[] 27
28
29

$ e

31

Circle innerCircle = new Circle();

f/5etting a new value

IS U L S e/ this will trigger set accessor

[/Accessing the existing value

ssageBox.Show(innerCircle.Diameter.ToString()) ; A" 0N]

¥

Figure 11. Adding break points inside the form load event.

Next, we will add some breakpoints inside the Circle class. To navigate to the class file, please do a right-
click on the Circle, and choose Go To Definition from the popup menu (or press F12).

Circle innanfincla = new Cinclaf)-
[¢ View Designer Shift+F7
//5et & Quick Actions and Refactorings... Ctrl+.
Rename... Ctrl+R, Ctrl+R
Remove and Sort Usings Ctrl+R, Ctrl+G
J/fAcd
E <> View Code F7
K Peek Definition Al+F12
m Go To Definition F12
Go To Base Alt+Home
Go To Implementation Ctrl+F12
Find All References Shift+F12

set accessor

BB/ /this will

Figure 12. Popup menu to jump to the class definition.

Then, add the following breakpoints inside the class file.

11 Ilél public int Diameter
12 ‘ {
13 B get
14 {
°
16 | +
17 E set
18 {
° =
28 +
21 | 1
72

Figure 13. Adding break points inside the class definition.

Now, please run your application by pressing F5.

2% | //Setting a new value

27 I innerCircle.Diameter = 5;//this will trigger set accessor

22 |

29 I //Accessing the existing value

30 I essageBox.Show(innerCircle.Dianeter. ToString()) ; AL N1
I

11 IEI public int Diameter

12| {

13 = get

14 {

15

16 T

17 = set
18 {
19 _diameter = walue; < 1imseclapssd
20 T
21 | }
Figure 14. set accessor is called when setting a new value.
26 f/setting a new value
27 ,f,n’this will trigger set accessor
28
29 f/Accessing the existing value
E1:] MessageBox.Show(innerCircle.Diameter.ToString());//this will trigger
11 Ilél public int Diameter
12| {
13 = get
14 1
15 return _diameter ;&£ imselzpsed
16 | }
17 = set
18 {
19
20 I
21 I }

Figure 15. get accessor is called when the value is accessed.

As shown in Figure 14, the program should first pause at line 27 in the main source code file, and then at
line 19 in the class source code file. This is because set accessor is executed when assigning a value to a
property of an object. Next, as shown in Figure 15, the program should pause at line 30 in the main source
code file, and then at line 15 in the class source code file. This is because get accessor is executed when
reading a value of an object property.

3) Defining read-only properties

We will create a new property called Radius for the Circle class. The code below shows the definition of
this property. The get accessor of this property returns _diameter / 2. However, it does NOT have the
set accessor defined, which makes this property read-only. That is users cannot change the Radius value
of the Circle objects.

class Circle

{

private int _diameter;

public int Diameter

{

get { return _diameter; }
set { _diameter = value; }

}

public double Radius
{

}
}

get { return _diameter / 2; }

One a property value is highly dependent on another property (e.g., radius is half of diameter), you should
always make the dependent property (e.g., Radius) read-only. Allowing the user to change the value of a
dependent property will result in incorrect values and errors.

4) Using auto property.

When a property simply sets and gets the value of a field, as the Diameter property does, the code can be
simplified using auto property. By using auto-properties you can simplify the code for creating properties
by NOT declaring a backing field, and by NOT writing code to get and set the property’s value. Below is
the definition of the Diameter property as an auto-property.

public int Diameter

{
get;
set;

}

When auto property is used, a hidden backing field as well as the code for the get and set methods are
automatically created by the compiler. Actually, | most of the time define the properties using the
following short syntax:

public int Diameter { get; set; }
4) Defining methods for classes.

You can also define methods for classes. For example, for Circle class, we can define two methods. One
to calculate the diameter of the circle, and another one to calculate the area of the circle. The definition
of these methods (CalculatePerimeter and CalculateArea) is provided below.

public double CalculateArea()
{

return Math.PI * Radius * Radius; //Math.Pow(Radius,2)
}

public double CalculatePerimeter()
{

return Math.PI * Radius * 2;

}

These methods basically apply the related mathematical formula to compute the area and diameter of a
circle based on the value stored in the property Radius. 7T is obtained using the Math . PI constant. These
methods for computing area and perimter will be available for any instances of the Circle class.

We will create a simple application to compute diameter and area of a circle object whose diameter is
provided by the user. As shown in Figure 16, the interface is composed of:

e atextbox named txt diameter where user needs to enter the diameter value,

e alabel named 1bl output to print the computed diameter or area values,

e abutton named btn computePerimeter to compute the diameter, and

e abutton named btn computeArea to compute the area of the circle.

¥ Formi — O x

Enter the diameter:

Perimeter Area

Output will be displayed here.

Figure 16. Interface of a simple application to compute diameter and area.

We will implement the click event handlers for both buttons. Please double click on the Perimeter button
to create its click event handler. Inside there, we will create a new Circle instance called myCircle. We
will convert the user input into integer and set it to the Diameter property of myCircle. Last, we will call

the CalculatePerimeter property to calculate the perimeter of myCircle and print it in 1bl output.
The complete code is shown below in Figure 17.

private void btn_computePerimeter_Click{object sender, Eventdrgs e)

1

Circle myCircle = new Circle();

myCircle.Diameter = int.Parse(txt_diameter.Text);

1bl output.Text = "Perimeter : " + myCircle.CalculatePerimeter().ToString();
¥

Figure 17. Click event handler for btn_computePerimeter.

Similarly, we will implement the click event handler for btn computeArea. The code will be the same
except that we will need to call the CalculateArea method this time. The code is shown in Figure 18.

(A

private void btn_computeArea Click{cbject sender, EventArg

{

e)

Circle myCircle = new Circle();
myCircle.Diameter = int.Parse(txt_diameter.Text};
1bl output.Text = "Area : " + myCircle.CalculateArea().ToString();

Figure 18. Click event handler for btn_computeArea.

Now, you can test your application. Figure 19 provides some sample screens from the running application.

1® Form1 — O X

Enter the diameter :
6

Penimeter : 18,84955592153876

¥ Form1 — O 4

Enter the diameter :
6 |

Area: 28,274333882308138

Figure 19. Sample screens from the running application.

5) Overloading methods.

In CH#, you can define the same method but with different parameters. This process is called overloading
and it results in overloaded methods. For example, neither CalculatePerimeter nor CalculateArea
methods accepts a parameter. We can overload these methods so that they can optionally accept a new
diameter value. In this way, instead of setting the diameter to some initial values, we can choose to
directly pass the diameter value to these methods for calculation.

The following code overloads the CalculatePerimeter method. In other words, it creates a second version
of the same method that accepts diameter parameter.

f/Calculate the perimeter
public double CalculatePerimeter()

1
¥

return Math.PI * Radius * 2;

[fOverloading CalculatePerimeter method
public double CalculatePerimeter(int diameter)

{

Diameter = diameter;
return Math.PI * Radius * 2;

h

Figure 20. Overloading the CalculatePerimeter method.

Now, we can update our existing code to use the overloaded method to calculate the perimeter. When
you write the code to call the CalculatePerimeter of myCircle object, the possible parameter options will
be displayed in a tooltip as shown in Figure 21 and Figure 22. If you click on the small up or down arrows
you can switch between different options that you can use. Since we have overloaded our method once,
you should be able to see two options.

private void btn_computePerimeter Click(object sender, Eventfrgs e)

1
Circle myCircle = new Circle();
double = int.Parse(txt_diameter.Text);
double | = myCircle.CalculatePerimeter();
A 1of 2 % double Circle.CalculatePerimeter()
1bl output.Text = v orwmecer— L TR, tePerimeter().ToString();
¥

Figure 21. Viewing the parameter options for the CalculatePerimeter method.

private void btn_computePerimeter Click{object sender, Eventirgs e)

{
Circle myCircle = new Circle();
double = int.Parse(txt_diameter.Text);
double | = myCircle.CalculatePerimeter(]);
A 2 of 2 ¥ double Circle.CalculatePerimeter(int diameter)
1bl output.Text = v oramecer— e ccorcerocererometer({) . ToString() ;
h

Figure 22. Viewing the parameter options for the CalculatePerimeter method.

We will use the overloaded method, which means we will pass the diameter to the CalculatePerimeter.
The sample code is shown in Figure 22.

private void btn_computePerimeter Click(object sender, Eventlrgs e)

{
Circle myCircle = new Circle();
int diameter = int.Parse(txt_diameter.Text);
double perimeter = myCircle.CalculatePerimeter(diameter);
1bl output.Text = "Perimeter : " + perimeter.ToS5tring();
h

Figure 23. Using the overloaded CalculatePerimeter method.

In runtime, the compiler chooses which version of the method to run by matching the method call with
the method signature. Method signature consists of the method name and the type of the parameters
passed. You CANNOT overload a method by ONLY changing its return type.

For example, the following code would throw an error since two methods have the same signature
although they return a different data type.

//Calculate the area
public double CalculateArea()

{

return Math.PI * Radius * Radius;

}

//0Overloading CalculateArea
public int CalculateArea()

{

return int.Parse(Math.PI * Radius * Radius);

}

6) Constructors

We can define constructors for classes to set some initial values for the properties. For example, the
Diameter property does not have any initial value when a new Circle object is created. We can define a
constructor that sets a Diameter to 0 when an object is created.

Constructors are actually methods that have the same name with the class. Below, we define a
parameterless constructor for the Circle class. This constructor is parameterless since it does not accept
any parameter by definition.

public Circle()
1

}

Diameter = 8;

public int Diameter { get; set; }
public double Radius { get { return Diameter / 2; } }

Figure 24. Defining a parameterless constructor method.

As we overload methods, we can also overload the constructors. Below in Figure 25, we overload the
constructor to optionally accept an initial diameter value.

class Circle

{
public Circle()
{
Diameter = 8;
¥
public Circle(int diameter)
{
Diameter = diameter;
¥

public int Diameter { get; set; }
public double Radius { get { return Diameter / 2; } }

Figure 25. Defining a parameterless constructor method.

Let’s use the overloaded constructor when computing the area. When you define a new Circle instance,
you should be able to see different constructors that you can use within a tooltip (see Figure 26).

private void btn_computeArea_Click({object sender, Eventfrgs e)

1

Circle myCircle = new Ciﬂcle(b;

myCircle.Diameter | 4 562 w Circle(int diameter) - 19Xt)5

1bl output.Text = “mrco— —mycxreeoecaacUlateldrea() . ToString() ;
h

Figure 26. Using the overloaded constructor.
Below is the updated definition of btn computeArea Click handler to compute the area by using the
parameterized constructor. The main difference is that we pass the diameter value when creating the

myCircle object instead of assigning the value to the Parameter property after creating the object.

private void btn_computefrea_Click({object sender, EventArgs e)

{
int diameter = int.Parse(txt diameter.Text);
Circle myCircle = new Circle(diameter);
double area = myCircle.Calculatefrea();
1bl output.Text = "Area : " + area.ToString();
}

Figure 27. Using the overloaded constructor.

It is totally okay NOT to create a constructor as we did initially in the chapter. In that case, a default
parameterless constructor is automatically created by the compiler in runtime.

7) Using lists to store class type objects

As covered in previous modules, lists can be used to store a set of objects. We can create a List to hold
objects of a specific class type, such as Circle. The following code defines a List called circles that
can store a collection of circle instances.

List<Circle> circles = new List<Circle>();

Notice that the word Circle is written inside angled brackets, <>, immediately after the word List. This
indicates that the circles List can hold only objects of the Circle class type.

To add anew itemto circles, we need to first define a Circle object. Then, we can use the Add method
to add a new object to circles. Before adding a new item, we will update the Circle class definition as
shown in Figure 28. In the updated definition, the constructors are removed, and Name and Id properties
are added.

class Circle

1
public int Id { get; set; }
public string Name { get; set; }
public int Diameter { get; set; }
public double Radius { get { return Diameter / 2; } }

//Calculate the perimeter
public double CalculatePerimeter()[:]

/fOverloading CalculatePerimeter method
public double CalculatePerimeter({int diameteh)[::

J//Calculate the area
public double Calculateﬂrea{)[:]

Figure 28. The updated class definition.

The following code shows an example for adding a new Circle class type object to a list.

//Create the circles list object
List<Circle> circles = new List<Circle>();

//Create a new instance of the Circle class type
Circle circlel = new Circle

{
Id = 1,
Name = "Inner circle",
Diameter = 10,

s

//Add the circlel object to the list
circles.Add(circlel);

7) Using listbox control to display class type objects

Listbox controls can be very convenient to display a set of class type objects. We will develop a new
application (or change the existing one), in which the users will be able to create new Circle objects,
them to a List, and display this list with a Listbox. Perimeter and area of the circle that is selected in the
listbox will be automatically calculated. The application interface is displayed in Figure 29 below. Please
name all controls as suggested in the figure.

¥ Formi - | X
Id [read-only] Circles o Ist_classes
[|
txt_id
Enter a name:
~ |
txt_name

Enter the diameter :

. | | Ibl_output

txt_diameter

Output will be displayed here.
btn_calculateArea
A/ —

Create Circle Perirmeter Area
N
btn_createCircle btn_calculatePerimete

Figure 29. The application interface.

First, we will define a BindingList object called circles that will store the Circle type objects. circles
will serve as the (fake) database for this application. BindingList can be considered as a special version
of List and most commonly used when binding data to form controls that can show multiple records,
such as ListBox.

public partial class Forml : Form

{
public Forml()
{
InitializeComponent();
¥

Bindinglist<Circle> circles = new Bindinglist<Circle>();

Figure 30. Defining the circles BindingList.

Next, we will define a method called BindCirclesToListBox. This method will bind circles BindingList
object to Ist_circles. This is done by assigning circles to DataSource property of 1st circles.

private void BindCirclesTolistBox()

{
1st circles.DataSource = circles;
1st_circles.ValueMember = "Id";
1st _circles.DisplayMember = "MName™;
1

Figure 31. Defining BindCirclesToListBox method.

We bind the data but right now 1st circles does not know which properties of Circle type objects to
use for displaying and identifying the items. In the listbox, we want to display the Name property of the
circle objects. For this purpose, we set the DisplayMember property of Ist_circles to “Name”. Last, we
want to identify the selected item in the listbox by using the Id property of the circle objects. To do this,
we set ValueMember to “Id”. These two properties accept a string value which should be equal to a
property of the class type objects being listed.

As shown below, BindCirclesToListBox will be called only once when the form is loaded. Any changes
made to circles, will be automatically reflected to 1st circles.

private void Forml_Load(object sender, EventArgs e)

1
¥

BindCirclesTolistBox();
Figure 32. Defining BindCirclesToListBox method.

Now, we will implement the click event handler for the btn createCircle button (see Figure 33). By
using the circle name and diameter values provided by the user, we will create a new instance of Circle,
called myCircle. The Id of myCircle will be set to the value of txt id.Text, which isinitially 0. Then,
we will add myCircle to circles list by using the Add method. Any changes to circles will be
automatically reflected in the listbox since circles, which is a BindCirclesTolListBox type, was once
bounded to the listbox 1st circles. Therefore, there is NO need to call BindCirclesToListBox method
again.

private void btn_createCircle Click(object sender, EventhArgs e)
{

Circle myCircle = new Circle();

myCircle.Id = int.Parse(txt_id.Text);

myCircle.Name = txt_circleName.Text;

myCircle.Diameter = int.Parse(txt_diameter.Text);

circles.Add(myCircle);

//BindCirclesTolistBox();
ResetForm(};

}

public void ResetForm()

{
int circleld = int.Parse(txt_id.Text);
circleld = circleld + 1;
txt_id.Text = circleld.ToString();
txt_diameter.Text = "7,
txt_circleName.Text = "7;

}

Figure 33. Adding a new circle.

After the new circle is added, we need to reset the form to let the user enter a new circle. For this purpose,
we create a new method called ResetForm and call this method inside the click event handler. ResetForm,
will clear the content of txt diameter and txt circleName, and moreimportantly it will increase the

value of txt id.Text value by one. This updated txt id.Text value will be the Id of the next circle
instance to be created. The implementation of ResetForm is shown in Figure 33.

We will test that we have built so far. Please run your application by pressing F5. Enter the values provided
in Figure 34 and click on the Create Circle button.

® Formi — O *

Circles

Id [read-only]
° |

Enter a name:

|Big circle |

Enter the diameter:

i |

Qutput will be displayed here,

Create Circle Perimeter Area

Figure 34. Creating a new circle.

In the next screen (see Figure 35), you should see the “Big circle” added to the listbox. Additionally, the
form should be reset, and the Id should be increased to 1.

i Form1 _ 0O %
Id [read-only] Circles
I |

Enter a name:

Enter the diameter :

Output will be displayed here.

Create Circle Perimeter Area

Figure 35. New circle is added, and the form is reset..

Now, we will implement the click event handler for btn_computePerimeter and btn_computeArea. These
buttons should calculate the perimeter or area for a selected circle instance in the listbox.

We will first implement btn_computePerimeter Click. To calculate the perimeter, we need to know
which circle instance is selected. As you may remember, circles are identified by the Id property, and this
property was set as the ValueMember of the listbox when the circles list was bounded to the listbox.

This means we should be able to access the Id of any selected item through the SelectedValue property.
In the code shown in Figure 36, 1st_circles.SelectedValue was used to read the Id of the selected circle

item in the list and assigned to circleId.

Once we know the Id of the selected circle, we use the Single method to return the only single circle object
from circles whose Id is equal to circleld. The returned circle object is assigned to selectedCircle.
Then, all we need to do is to call CalculatePerimeter method selectedCircle and print the result in
1bl_output. See Figure 36 for the complete implementation.

private void btn_computePerimeter_Click{object sender, Eventirgs e)

1
int circleld = (int)lst circles.SelectedValue;
Circle selectedCircle = circles.Single(c =» c.Id == circleld);
double perimeter = selectedCircle.CalculatePerimeter();
1bl _output.Text = "Perimeter : " + perimeter.ToString();
¥

Figure 36. Calculating the perimeter of the selected circle.

Last, we will implement the click event handler for btn_computeArea. We can use almost the same code
here. Only difference is that we need to call CalculateArea method for the selected circle. See Figure 37.

private void btn_computeArea Click(object sender, EventhArgs e)

{
int circleld = (int)lst _circles.SelectedValue;
Circle selectedCircle = circles.Single(c=»c.Id== circleld);
double area = selectedCircle.Calculatefrea();
1bl output.Text = “Area : " + area.ToString();
I

Figure 37. Calculating the area of the selected circle.

Now you can test your finished project. Add some circles, and then click on Perimeter or Area buttons.
Some sample screens are shown below.

® Form1 - O X ® Form1 — O *
Id [read-only] Circles Id [read-only] Circles
B | B | big circle
smal crcle N rrr—
Enter a name: Enter a name:

Enter the diameter: Enter the diameter:

Perimeter : 31,415926535858793 Area: 3,141592653589793

Create Circle Area Create Circle Perimeter

