
Module 9 – Introduction to the Classes and Objects.

C# is an object-oriented programming languages. That means, coding in C# involves creating many objects

and using their properties and methods to perform some operations. For example, all controls (e.g., label,

textbox, button, etc.) that we have used to design forms are actually objects. Lists are also another great

example of the objects we used so far. To be able to create and use objects of a particular type, a class

must be created. Below is the definition of a list object called names. If you mouse over the List keyword,

a tooltip window will appear, where you can see that List is a class.

Figure 1. Defining names list object.

While the cursor is inside the List keyword, press F12 to view the definition of the List class. Its definition

is quite long, and Figure 2 shows only part of it. You may remember that we used some properties (e.g.,

Count) and methods (Add, Clear, Contains) for List objects. They are all created in the definition of the

List class as you can see in Figure 2. Any object created from List class, will have the same set of

properties and methods as defined in the class declaration.

Figure 2. Definition of List class.

The goal of this chapter to introduce the classes. To continue with the rest of the activities, please create

a new project called Module9_yourName.

1) Creating classes in C#

Classes determine the characteristics of objects in terms of the data that objects can hold (fields and

properties) and the actions that objects can perform (methods). Imagine that you want to create circle

objects in your program. For this, it is better you create a class named Circle.

We will define the Circle class. Before we do that, we will create a new folder named Model. I recommend

adding all classes to this folder since by creating the classes we are actually building the model of our

program. To create a new folder, please right click on the project name in the solution explorer. A popup

menu will appear. Choose Add -> New Folder as shown in Figure 3.

Figure 3. Adding a new folder to the project.

Last, please name the folder as Model. Your Solution Explorer window should look similar to Figure 4.

Figure 4. Naming the new folder.

Now that we have the Model folder created, we will create a new class file named Circle. To do that,

please right click on Model folder, choose Add and then Class from the popup menus. This process is

visualized in Figure 5.

Figure 5. Adding a new class to Model folder.

A dialog window should appear where you need to enter a name for the class file. We will name our class

as Circle as shown in Figure 6.

Figure 6. Creating a new class named Circle.

After pressing the Add button, you should have the Circle.cs (which is the source code file of the class)

added inside the Model folder. The source code file will be automatically opened as seen in Figure 7 below.

Figure 7. Circle class is created.

Initially, your class will be empty, meaning that it will not have any properties or methods defined. As

shown in Figure 8, class definition basically consists of a header and body. In header class keyword is

accompanied with the name of the class (e.g., class Circle). You should always use uppercase for the

first letter of the class name.

Figure 8. Class definition.

Once a class is defined, you can create new objects from that class. For example, in the following code,

we create two Circle objects:

Circle smallCircle = new Circle();

Circle bigCircle = new Circle();

2) Defining class properties

The Circle class is now empty, and we will define it. A class definition consists of properties (and fields)

and methods. A property defines a specific characteristic of a class and holds data pertaining to that

characteristic. For example, a Label control has a Text property that is used to determine what text the

label should display, or ForeColor property to change the font colour.

We will define a diameter property for the Circle class. A property works in conjunction with a field. Field

holds the value for the object, while property allows us to set or get the value of the field. A property

contains two special types of methods, called accessors, which are get and set. While get is invoked

when we read the property value, set is called when we assign a new value to the property.

A field is always defined as private and should not be accessible outside the class. Since they hold critical

data about objects, allowing direct access to them is not recommended. This is a common case, and you

should follow it (although it is possible to define them as public). Encapsulating them inside the accessor

methods, provides a more secure and effective control over the private fields.

Class header

Class body

The code below shows how to define a property, called Diameter, for the Circle class. We first define a

private field, which holds the value for this property. Typically, the field name is determined by appending

_ in front of the property name. In our case, the field name will be _diameter. Then, the Diameter property

is defined using set and get accessors. While get returns the _diameter field, set will update the

_diameter field with some value.

class Circle
{
 private int _diameter;

 public int Diameter
 {
 get { return _diameter; }
 set { _diameter = value; }
 }
}

Now, we can create objects from the Circle class. The code at line 24 in Figure 9 creates a Circle object

called innerCircle. “Circle innerCircle“ is the expression on the left hand-side of “=”. This

declares a variable that will hold a reference to the object. new Circle() is the expression on the right

hand-side of ”=”, which creates the innerCircle object in the memory and returns a reference to it by

calling the constructor of the class using the new keyword. We will cover constructors soon in this module.

When you place a dot next to the object name (see line 26 in Figure 9), you should be able to see the

property name called Diameter displayed in a list, but not the _diameter field. This is because the

Diameter property was declared as public, whereas the _diameter field was declared as private. Private

class members are NOT accessible through the objects.

Figure 9. Class definition.

After creating the innerCircle object, we will set the value of the Diameter property to 5. To do that,

we basically use the assignment operator =. This is similar to setting a new value to the Text property of a

label or textbox, which we have repeated many times. Next, we will print the Diameter value of the

innerCircle object using MessageBox.Show method. The code necessary to perform these operations

is provided below in Figure 10.

value is an “implicit” parameter because it is

automatically created by the compiler. It carries the

data type of the property. In this case, the value

parameter’s data type is int .

Figure 10. Using the Diameter property of the innerCircle object.

You can create as many new object as you want using the Circle class. All these objects would have a

Diameter property, which can have a different value for each distinct object.

We will test how our program functions by adding some breakpoints. First, please add the following

breakpoints inside the main source code file.

Figure 11. Adding break points inside the form load event.

Next, we will add some breakpoints inside the Circle class. To navigate to the class file, please do a right-

click on the Circle, and choose Go To Definition from the popup menu (or press F12).

Figure 12. Popup menu to jump to the class definition.

Then, add the following breakpoints inside the class file.

Figure 13. Adding break points inside the class definition.

Now, please run your application by pressing F5.

Figure 14. set accessor is called when setting a new value.

Figure 15. get accessor is called when the value is accessed.

As shown in Figure 14, the program should first pause at line 27 in the main source code file, and then at

line 19 in the class source code file. This is because set accessor is executed when assigning a value to a

property of an object. Next, as shown in Figure 15, the program should pause at line 30 in the main source

code file, and then at line 15 in the class source code file. This is because get accessor is executed when

reading a value of an object property.

3) Defining read-only properties

We will create a new property called Radius for the Circle class. The code below shows the definition of

this property. The get accessor of this property returns _diameter / 2. However, it does NOT have the

set accessor defined, which makes this property read-only. That is users cannot change the Radius value

of the Circle objects.

class Circle
{
 private int _diameter;

 public int Diameter
 {
 get { return _diameter; }
 set { _diameter = value; }
 }

 public double Radius
 {
 get { return _diameter / 2; }
 }
}

One a property value is highly dependent on another property (e.g., radius is half of diameter), you should

always make the dependent property (e.g., Radius) read-only. Allowing the user to change the value of a

dependent property will result in incorrect values and errors.

4) Using auto property.

When a property simply sets and gets the value of a field, as the Diameter property does, the code can be

simplified using auto property. By using auto-properties you can simplify the code for creating properties

by NOT declaring a backing field, and by NOT writing code to get and set the property’s value. Below is

the definition of the Diameter property as an auto-property.

 public int Diameter
 {
 get;
 set;
 }

When auto property is used, a hidden backing field as well as the code for the get and set methods are

automatically created by the compiler. Actually, I most of the time define the properties using the

following short syntax:

 public int Diameter { get; set; }

4) Defining methods for classes.

You can also define methods for classes. For example, for Circle class, we can define two methods. One

to calculate the diameter of the circle, and another one to calculate the area of the circle. The definition

of these methods (CalculatePerimeter and CalculateArea) is provided below.

 public double CalculateArea()
 {

 return Math.PI * Radius * Radius; //Math.Pow(Radius,2)
 }

 public double CalculatePerimeter()
 {
 return Math.PI * Radius * 2;
 }

These methods basically apply the related mathematical formula to compute the area and diameter of a

circle based on the value stored in the property Radius. π is obtained using the Math.PI constant. These

methods for computing area and perimter will be available for any instances of the Circle class.

We will create a simple application to compute diameter and area of a circle object whose diameter is

provided by the user. As shown in Figure 16, the interface is composed of:

• a textbox named txt_diameter where user needs to enter the diameter value,

• a label named lbl_output to print the computed diameter or area values,

• a button named btn_computePerimeter to compute the diameter, and

• a button named btn_computeArea to compute the area of the circle.

Figure 16. Interface of a simple application to compute diameter and area.

We will implement the click event handlers for both buttons. Please double click on the Perimeter button

to create its click event handler. Inside there, we will create a new Circle instance called myCircle. We

will convert the user input into integer and set it to the Diameter property of myCircle. Last, we will call

the CalculatePerimeter property to calculate the perimeter of myCircle and print it in lbl_output.

The complete code is shown below in Figure 17.

Figure 17. Click event handler for btn_computePerimeter.

Similarly, we will implement the click event handler for btn_computeArea. The code will be the same
except that we will need to call the CalculateArea method this time. The code is shown in Figure 18.

Figure 18. Click event handler for btn_computeArea.

Now, you can test your application. Figure 19 provides some sample screens from the running application.

Figure 19. Sample screens from the running application.

5) Overloading methods.

In C#, you can define the same method but with different parameters. This process is called overloading
and it results in overloaded methods. For example, neither CalculatePerimeter nor CalculateArea
methods accepts a parameter. We can overload these methods so that they can optionally accept a new
diameter value. In this way, instead of setting the diameter to some initial values, we can choose to
directly pass the diameter value to these methods for calculation.

The following code overloads the CalculatePerimeter method. In other words, it creates a second version
of the same method that accepts diameter parameter.

Figure 20. Overloading the CalculatePerimeter method.

Now, we can update our existing code to use the overloaded method to calculate the perimeter. When
you write the code to call the CalculatePerimeter of myCircle object, the possible parameter options will
be displayed in a tooltip as shown in Figure 21 and Figure 22. If you click on the small up or down arrows
you can switch between different options that you can use. Since we have overloaded our method once,
you should be able to see two options.

Figure 21. Viewing the parameter options for the CalculatePerimeter method.

Figure 22. Viewing the parameter options for the CalculatePerimeter method.

We will use the overloaded method, which means we will pass the diameter to the CalculatePerimeter.
The sample code is shown in Figure 22.

Figure 23. Using the overloaded CalculatePerimeter method.

In runtime, the compiler chooses which version of the method to run by matching the method call with
the method signature. Method signature consists of the method name and the type of the parameters
passed. You CANNOT overload a method by ONLY changing its return type.

For example, the following code would throw an error since two methods have the same signature
although they return a different data type.

 //Calculate the area
 public double CalculateArea()
 {
 return Math.PI * Radius * Radius;
 }

 //Overloading CalculateArea
 public int CalculateArea()
 {
 return int.Parse(Math.PI * Radius * Radius);
 }

6) Constructors

We can define constructors for classes to set some initial values for the properties. For example, the
Diameter property does not have any initial value when a new Circle object is created. We can define a
constructor that sets a Diameter to 0 when an object is created.

Constructors are actually methods that have the same name with the class. Below, we define a
parameterless constructor for the Circle class. This constructor is parameterless since it does not accept
any parameter by definition.

Figure 24. Defining a parameterless constructor method.

As we overload methods, we can also overload the constructors. Below in Figure 25, we overload the
constructor to optionally accept an initial diameter value.

Figure 25. Defining a parameterless constructor method.

Let’s use the overloaded constructor when computing the area. When you define a new Circle instance,
you should be able to see different constructors that you can use within a tooltip (see Figure 26).

Figure 26. Using the overloaded constructor.

Below is the updated definition of btn_computeArea_Click handler to compute the area by using the
parameterized constructor. The main difference is that we pass the diameter value when creating the
myCircle object instead of assigning the value to the Parameter property after creating the object.

Figure 27. Using the overloaded constructor.

It is totally okay NOT to create a constructor as we did initially in the chapter. In that case, a default
parameterless constructor is automatically created by the compiler in runtime.

7) Using lists to store class type objects

As covered in previous modules, lists can be used to store a set of objects. We can create a List to hold
objects of a specific class type, such as Circle. The following code defines a List called circles that
can store a collection of circle instances.

List<Circle> circles = new List<Circle>();

Notice that the word Circle is written inside angled brackets, <>, immediately after the word List. This
indicates that the circles List can hold only objects of the Circle class type.

To add a new item to circles, we need to first define a Circle object. Then, we can use the Add method
to add a new object to circles. Before adding a new item, we will update the Circle class definition as
shown in Figure 28. In the updated definition, the constructors are removed, and Name and Id properties
are added.

Figure 28. The updated class definition.

The following code shows an example for adding a new Circle class type object to a list.

//Create the circles list object
List<Circle> circles = new List<Circle>();

//Create a new instance of the Circle class type
Circle circle1 = new Circle
{
 Id = 1,
 Name = "Inner circle",
 Diameter = 10,
};

//Add the circle1 object to the list
circles.Add(circle1);

7) Using listbox control to display class type objects

Listbox controls can be very convenient to display a set of class type objects. We will develop a new
application (or change the existing one), in which the users will be able to create new Circle objects,
them to a List, and display this list with a Listbox. Perimeter and area of the circle that is selected in the
listbox will be automatically calculated. The application interface is displayed in Figure 29 below. Please
name all controls as suggested in the figure.

Figure 29. The application interface.

First, we will define a BindingList object called circles that will store the Circle type objects. circles
will serve as the (fake) database for this application. BindingList can be considered as a special version
of List and most commonly used when binding data to form controls that can show multiple records,
such as ListBox.

Figure 30. Defining the circles BindingList.

Next, we will define a method called BindCirclesToListBox. This method will bind circles BindingList

object to lst_circles. This is done by assigning circles to DataSource property of lst_circles.

Figure 31. Defining BindCirclesToListBox method.

lst_classes

btn_calculateArea

btn_calculatePerimeter btn_createCircle

txt_id

txt_name

txt_diameter

lbl_output

We bind the data but right now lst_circles does not know which properties of Circle type objects to

use for displaying and identifying the items. In the listbox, we want to display the Name property of the

circle objects. For this purpose, we set the DisplayMember property of lst_circles to “Name”. Last, we

want to identify the selected item in the listbox by using the Id property of the circle objects. To do this,

we set ValueMember to “Id”. These two properties accept a string value which should be equal to a

property of the class type objects being listed.

As shown below, BindCirclesToListBox will be called only once when the form is loaded. Any changes

made to circles, will be automatically reflected to lst_circles.

Figure 32. Defining BindCirclesToListBox method.

Now, we will implement the click event handler for the btn_createCircle button (see Figure 33). By

using the circle name and diameter values provided by the user, we will create a new instance of Circle,

called myCircle. The Id of myCircle will be set to the value of txt_id.Text, which is initially 0. Then,

we will add myCircle to circles list by using the Add method. Any changes to circles will be

automatically reflected in the listbox since circles, which is a BindCirclesToListBox type, was once

bounded to the listbox lst_circles. Therefore, there is NO need to call BindCirclesToListBox method

again.

Figure 33. Adding a new circle.

After the new circle is added, we need to reset the form to let the user enter a new circle. For this purpose,

we create a new method called ResetForm and call this method inside the click event handler. ResetForm,

will clear the content of txt_diameter and txt_circleName, and more importantly it will increase the

value of txt_id.Text value by one. This updated txt_id.Text value will be the Id of the next circle

instance to be created. The implementation of ResetForm is shown in Figure 33.

We will test that we have built so far. Please run your application by pressing F5. Enter the values provided

in Figure 34 and click on the Create Circle button.

Figure 34. Creating a new circle.

In the next screen (see Figure 35), you should see the “Big circle” added to the listbox. Additionally, the

form should be reset, and the Id should be increased to 1.

Figure 35. New circle is added, and the form is reset..

Now, we will implement the click event handler for btn_computePerimeter and btn_computeArea. These

buttons should calculate the perimeter or area for a selected circle instance in the listbox.

We will first implement btn_computePerimeter_Click. To calculate the perimeter, we need to know

which circle instance is selected. As you may remember, circles are identified by the Id property, and this

property was set as the ValueMember of the listbox when the circles list was bounded to the listbox.

This means we should be able to access the Id of any selected item through the SelectedValue property.

In the code shown in Figure 36, lst_circles.SelectedValue was used to read the Id of the selected circle

item in the list and assigned to circleId.

Once we know the Id of the selected circle, we use the Single method to return the only single circle object

from circles whose Id is equal to circleId. The returned circle object is assigned to selectedCircle.

Then, all we need to do is to call CalculatePerimeter method selectedCircle and print the result in

lbl_output. See Figure 36 for the complete implementation.

Figure 36. Calculating the perimeter of the selected circle.

Last, we will implement the click event handler for btn_computeArea. We can use almost the same code

here. Only difference is that we need to call CalculateArea method for the selected circle. See Figure 37.

Figure 37. Calculating the area of the selected circle.

Now you can test your finished project. Add some circles, and then click on Perimeter or Area buttons.

Some sample screens are shown below.

