
Module 10 – Inheritance and polymorphism.

This module covers two advance topics in object-oriented programming: inheritance and polymorphism.

To continue with the rest of the chapter, please download the zipped Module10_student project file in

OdtuClass and open it in Visual Studio.

1) Inheritance

In object-oriented programming, Inheritance means deriving a new class (called derived class) from an

existing class (called base class). Typically, the base class represents a rather generic object (such as

shape), whereas the derived class (such as rectangle) is a more specialized version of the generic object.

Inheritance relies on “is a relationship” between the derived and base classes. Some examples are:

• A flower is a plant.

• A golden-retriever is a dog.

• A triangle is a shape.

A derived class can have additional properties and methods in addition to those inherited from the base

class. For example, a shape class can have LocationX, LocationY, and Color properties that are common to

all shape objects. A rectangle class derived from the shape class can have properties such as width and

height (that are distinct to a rectangle), in addition to those owned by the base class (e.g., LocationX,

LocationY, and Color).

We will work on an example to understand how inheritance works in practice. Imagine that in our

application we need to create different types of shapes: triangle, rectangle, and circle. All these shapes

share four common properties: an int property named Id, a string property called Name, a string property

called BorderColor, and a string property named FillColor.

Circle class will have three properties in addition to the shared properties: an int property named

Diameter, an int property named Angle, and a double property named Radius. Create a folder named

Model in your project, and inside this folder, create the Circle class file. The definition of the Circle class

is provided below.

class Circle
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string BorderColor { get; set; }
 public string FillColor { get; set; }

 public int Diameter{ get; set; }
 public int Angle{ get; set; }
 public double Radius { get { return Diameter / 2; } }
}

Triangle class will have four additional properties: an int property named Height, an int property Base,

an int property SideLeft, an int property SideRight. The definition of the Triangle class is provided

below. Add this class to the Model folder.

class Triangle
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string BorderColor { get; set; }
 public string FillColor { get; set; }

 public int Height { get; set; }
 public int Base { get; set; }
 public int SideLeft { get; set; }
 public int SideRight { get; set; }
}

Rectangle class will have four additional properties: an int property named Width, and an int property

Length. The definition of the Rectangle class is provided below. Add this class to the Model folder.

class Rectangle
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string BorderColor { get; set; }
 public string FillColor { get; set; }

 public int Width { get; set; }
 public int Length { get; set; }
}

You might have already realized that this is a rather inefficient approach. All three classes share four

common properties, and we repeat them in each class. Not only this will result in duplicated code but will

also make it harder to change the common properties or add a new common property.

A more efficient approach would be to define a base class called Shape which will hold all common

properties. Definition of the Shape class is provided below. Add this class to the Model folder.

class Shape
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string BorderColor { get; set; }
 public string FillColor { get; set; }
 public string DisplayText { get { return Id.ToString() + ". " + Name; } }
}

Now, we will revisit the Triangle, Circle, and Rectangle classes. These classess will derive from the

Shape class (i.e., base class) to inheret the properties shared by all shape objects. Below is the updated

definition of the Triangle class. Please pay attention to the change in the class header. Triangle : Shape.

This format is used to indicate that Triangle derives from the Shape class.

class Triangle : Shape
{
 public int Height { get; set; }
 public int Base { get; set; }
 public int SideLeft { get; set; }
 public int SideRight { get; set; }
}

We will also update the Circle and Rectangle classess so that they also derive from the Shape class. In

the updated class definitions, the common properties should be removed.

class Circle : Shape
{
 public int Diameter{ get; set; }
 public int Angle{ get; set; }
 public double Radius { get { return Diameter / 2; } }
}

class Rectangle : Shape
{
 public int Width { get; set; }
 public int Length { get; set; }
}

2) Inheritance in practice

We will put these ideas in practice by working on an application. You should download the project file
from OdtuClass. The interface of the application (see Figure 1) is already created as shown below and
some minimal code is included. This application will allow users to create different shapes, and to list the
shapes created in a list box (available in the Shape List tab page).

Figure 1. The main interface of the application.

When the application is run, the form will be displayed in a smaller window as shown in Figure 2. When
the Continue button is clicked, the form will be extended to the right to show the options for creating the
type of shape to be created (see Figure 3). This functionality is already programmed.

Figure 2. The first screen when the application is run.

Figure 3. The screen extended after Continue is clicked.

When the Create Triangle button is clicked, a new Triangle object should be created (based on the user
input) and shown in the list box inside the Shape List tab page. To implement this, please double click on
the Create Triangle button to create its click event handler.

Inside the click event handler, please write the following code to create an empty Triangle object and
set its property values based on the data provided by the user.

//Create an empty Triangle object named myTriangle
Triangle myTriangle = new Triangle();

//Set values for the common properties
myTriangle.Id = controlId;
controlId = controlId + 1;

myTriangle.Name = txt_name.Text;
myTriangle.BorderColor = txt_bordercolor.Text;
myTriangle.FillColor = txt_fillcolor.Text;

//Set values for the distinct properties
myTriangle.Base = int.Parse(txt_triangleBase.Text);
myTriangle.SideLeft = int.Parse(txt_leftSide.Text);
myTriangle.SideRight = int.Parse(txt_rightSide.Text);
myTriangle.Height = int.Parse(txt_tiangleHeight.Text);

After the object is properly updated with user data, you can use the following code to add this object to

triangles, which is a BindingList type variable defined at class level to hold multiple Triangle type

objects. triangles will be updated each time a new triangle object is created.

//Add the myTriangle object to a list of triangles
triangles.Add(myTriangle);

Next, the following code will can bind triangles to lst_shapes to list the Triangle objects created.
The DisplayMember property of lst_shapes is set to “DisplayText”, which is a property of the Shape class
that returns the Id and Name properties combined.

//Display the list of triangles
lst_shapes.DataSource = triangles;
lst_shapes.DisplayMember = "DisplayText";
lst_shapes.ValueMember = "Id";

Last, what goes inside the click event handler of Create Triangle is the following code. This code will switch
the current tab to Shape List tab where the new objects created are listed. Also, ResetForm method will
be called to reset all the fields to empty.

//Switch to the Shape List tab
tab_shapes.SelectedTab = tab_shapeList;

//Reset the form
ResetForm();

You can run and test the application. Please enter some data as shown in Figure 4.

Figure 4. Creating a triangle object.

Next, click on the Create Triangle button. You should see the new triangle object being listed in the
Shape List tab, as shown in Figure 5.

Figure 5. The new triangle object is listed.

We will continue building our application by implementing the Create Rectangle button’s click event
handler (see Figure 6). Please double click on the Create Rectangle button to create its click event handler.

Figure 6. Clicking on the Create Rectangle button.

Click event handler of the Create Rectangle button should have a very similar code to what we have
already for the previous button. The main difference would be to create a Rectangle object instead of
Triangle. At this point we can take advantage of Inheritance to somehow avoid writing repetitive code.

To begin with, when creating a new shape (no matter it is a rectangle, triangle, or a circle), it will have four
common properties: Id, Name, BorderColor, and FillColor. All these property values will be set based on
user data. We can define a method that sets the values of these properties for any class object that is
derived from the Shape base class.

Figure 7 shows the definition of the SetSharedProperties method which accepts any Shape object as the

parameter. In this case, Triangle, Rectangle, and Circle objects can be passed as the parameter since each of
them is a shape (as they derive from the Shape class).

Figure 7. Defining the SetSharedProperties method.

Now, we can call this method inside the click event handler of Create Rectangle button. In the code shown
in Figure 8, first a new Rectangle object is created, named myRectangle. Then, SetSharedProperties is
called to set the values for the common properties inherited from the Shape class. Next, the values of the
Width and Length properties are set properly based on user input.

Figure 8. Calling the SetSharedProperties method inside the click event handler.

Now that the object is created and initialized properly, we can display it in the listbox control. As you may
remember, for the Triangle object, we used a BindingList that can hold only Triangle type objects.
However, this is not sufficient because we want to store multiple types of objects in a list and display them
together in a listbox.

We can apply a more effective approach thanks to Inheritance. We will create a BindingList that can hold
Shape type objects. Since triangle, circle, and rectangle are also a shape, they can be stored in this list.
Let’s go ahead and create the BindingList variable, named shapes, to hold Shape type objects. Please
note that this variable should be defined at class level as shown in Figure 9.

Figure 9. Defining the shapes variable.

Next, we will add the myTriangle object to the shapes list, then we will bind the shapes list to
lst_shapes, as shown below.

//Add the myRectangle object to a list of triangles
shapes.Add(myRectangle);

//Display the list of triangles
lst_shapes.DataSource = shapes;
lst_shapes.DisplayMember = "DisplayText";
lst_shapes.ValueMember = "Id";

We need to bind shapes to lst_shapes each time a new Triangle, Circle, or Rectangle objects are
created. We can eliminate this repetition by creating a method that binds shapes list to lst_shapes.
Then, we need to call this method only once when the page is loaded. Since shapes is a BindingList type,
any changes in shapes will be automatically reflected to lst_shapes, where the shapes list is bounded
as the data source. The complete code is shown below.

Figure 10. Binding the data.

After these changes, the final code in the click event handler of btn_createRectangle button should
look like this:

Figure 11. Binding the data.

You should go back and revise the btn_createTriangle_Click click event handler. With the addition of
some new methods, it should be simplified.

Following the same approach, also implement the click event handler for Create Circle (see Figure 12).

Figure 12. Creating click event handler for the Create Circle button.

After completing the click event handlers for buttons, please run your application and add three different
shapes. The list box should be able to display all different types of shapes as shown in Figure 13 below.

Figure 13. Different shapes are added and displayed in the list box.

3) Polymorphism

The term Polymorphism means that objects can exist in different forms. In terms of object-oriented
programming, Polymorphism allows derived classes to have different implementation for the methods
inherited from the base class. Thanks to the polymorphism, program can identify which method to call
depending on the object type. We will apply polymorphism in our current example.

We will add two new methods to the Shape class: CalculatePerimeter and CalculateArea. These

methods will return 0, since the length, width, or diameter of the shape is not known yet.

CalculatePerimeter and CalculateArea methods will have the virtual keyword in the header, as

seen below. Methods declared with virtual keyword are allowed to be overridden by the derived class.

class Shape
{
 public int Id { get; set; }
 public string Name { get; set; }
 public string BorderColor { get; set; }
 public string FillColor { get; set; }

 public string DisplayText { get { return Id.ToString() + ". " + Name; } }

 public virtual double CalculatePerimeter()
 {
 return 0;
 }

 public virtual double CalculateArea()
 {
 return 0;
 }
}

Next, we will update the definition of the Rectangle class. As shown below, the Triangle class overrides

the CalculatePerimeter and CalculateArea methods, and provides a new definition for these

methods based on how a triangle’s perimeter and area should be calculated. Pay attention to the

override keyword in the method header. The override indicates that the method in the derived class

overrides a method in the base class.

class Triangle: Shape
{
 public int Height { get; set; }
 public int Base { get; set; }
 public int SideLeft { get; set; }
 public int SideRight { get; set; }

 public override double CalculatePerimeter()
 {
 return Base + SideLeft + SideRight;
 }

 public override double CalculateArea()
 {
 return Base * Height / 2;
 }
}

We will define a new Triangle object, called myTriangle, whose Base is 10 and Height is 15.

Triangle myTriangle = new Triangle();
myTriangle.Base = 10;
myTriangle.Height = 15;

We will call the CalculateArea method to calculate the area for the myTriangle object. Then we will
print the computed area using MessageBox.Show method.

double area = myTriangle.CalculateArea();

MessageBox.Show("Area of the triangle is " + area.ToString());

The following popup window should appear printing the area of the triangle correctly.

Figure 14. Printing the area of the triangle.

We will update the Circle and Rectangle classes accordingly by overriding the CalculatePerimeter
and CalculateArea methods.

class Circle: Shape
{
 public int Diameter{ get; set; }
 public int Angle{ get; set; }
 public double Radius { get { return Diameter / 2; } }

 public override double CalculatePerimeter()
 {
 return Math.PI * Radius * 2;
 }

 public override double CalculateArea()
 {
 return Math.PI * Radius * Radius * Angle /360;;
 }
}

class Rectangle: Shape
{
 public int Width { get; set; }
 public int Length { get; set; }

 public override double CalculatePerimeter()
 {
 return 2 * (Width + Length);
 }

 public override double CalculateArea()
 {
 return Width * Length;
 }
}

We are allowed to override properties as well. As an additional exercise, you can define the DisplayText
property with virtual keyword, and override this property in the derived classes to set a different display
text for different shapes.

4) Is a relationship in Polymorphism

You may remember that there is a “Is a” relationship between the derived and bases classes. For example,
a Triangle is not only a Triangle but is also a Shape. Thanks to this relationship, we can use a Shape class
variable to reference a Triangle object. For example, look at the following code:

Shape myShape = new Triangle() { Base = 10, Height = 15 };
double area = myShape.CalculateArea();

MessageBox.Show("Area of the triangle is " + area.ToString());

In the code above, a Triangle object is created and assigned to a Shape variable called myShape. This
assignment is legal because a Triangle object is also a Shape object. The CalculateArea method will
compute the area of the triangle correctly because myShape will know that it is referencing a Triangle
object.

5) Polymorphism in practice

We will apply polymorphism in our project to compute the perimeter and area of the item selected in the
list box no matter if it is a triangle, rectangle, or circle. As shown in Figure 15, please double click on the
lst_shapes to create its SelectedIndexChanged event handler.

Figure 15. Creating the SelectedIndexChanged event handler.

This event handler will be executed when the selected item in lst_shapes is changed. We will write our
code to compute the perimeter and area of the selected shape inside this event handler. Thanks to
polymorphism this will be quite easy.

First, we obtain the Id of the selected shape by using SelectedValue property. We use the Id value inside
the Single method to find the target shape inside the shapes list . The rest is quite straightforward. We

call the CalculatePerimeter and CalculateArea methods for the shape and print them in the labels
properly. See the complete code in Figure 16.

Figure 16. Implementing the SelectedIndexChanged event handler.

Please note that, thanks to Inheritance and Polymorphism, the program knows the specific class of each
shape selected (i.e., whether it is a triangle, rectangle, or circle) and calls the correct version of the
CalculatePerimeter and CalculateArea methods depending on the type of the shape.

Please run and test your application. Define different types of shapes and check if the Perimeter and Area
labels are properly updated as these shapes are selected in the list box. Some examples are shown below.

