
Module 11: Introduction to Databases and Entity Framework

In this module, you will learn about databases and how to use Entity Framework to create databases for

your C# projects. To continue with the rest of the chapter, please create a new C# project in Visual Studio.

1) Databases

So far, we have used very limited amount of data and we used lists and arrays to store and manipulate

the data. With this approach, we could store little data in the memory and when we close the application

all data created in runtime were automatically destroyed. However, many applications require storing

large amounts of data and keeping the data for longer periods of time (until they are intentionally

deleted). In other words, in many applications, we need the data to persist. In such cases, we use

databases to store and manipulate data in a structured way. For example, in a course management

program, you may need to keep record of hundreds of courses and students in a university and allow

users to list, delete, update, and search the data. Surely, a database needs to be created for such a

program.

We use database management systems to design and implement databases. Once the database is created,

you can include it in your C# project. We will install SQL Server Data Tools to Visual Studio, which will

provide as with an embedded database management option inside Visual Studio.

Open Visual Studio Installer from the Start menu.

Figure 1. Opening Visual Studio Installer.

In this window as shown below, please click on Modify.

Figure 2. Visual Studio Installer window.

In the next window, check the Data storage and processing item. On the right hand-side, some related

options will be shown. Mark those that are shown with red arrow in the image below. Then, click on

the Modify button.

Figure 3. Selecting the Data storage and processing options in the Visual Studio Installer window.

Once the installation is complete you should be able to see the SQL Server Object Explorer item under

the View menu as shown below. Please click on it.

Figure 4. SQL Server Object Explorer item under the View menu

The following window should appear in Visual Studio. In this window, if you see (localdb) under SQL

Server, then you are good with continuing the rest of the chapter.

Figure 5. SQL Server Object Explorer window

2) Creating databases and tables

To create a new database, please right click on the Databases item and from the popup menu choose Add

New Database, as shown below.

Figure 6. Adding a new database

The following popup window should appear. Please enter BookManagement as the Database Name. You

can leave the location as it is.

Figure 7. Entering a name for the database

As shown in Figure8 below, the database should be created and listed under the Databases folder inside

SQL Server Object Explorer. In SQL, a database organizes and stores data via tables. A table stores data in

rows and columns similar to a spreadsheet. Columns hold different piece of information about items

stored in each row. For example, in a Books table, there might be columns to store id, title and page

information about books. Each row would correspond to a distinct book item.

Let’s create Books table. To do so, please right click on the Tables folder and choose Add New Table item

from the popup menu.

Figure 8. Adding a new table menu item

Figure 9. Adding a new table

The window shown in Figure 9 above should be displayed. In this window, at the top part you will see the

design view while just at the bottom you will see the SQL code view. You can use either design or code

views to configure the table. Any changes in one of them should be automatically reflected in the other

one.

Most tables should have a primary key, which is a column that holds a unique value to identify a specific

item or row in a table (such as a book). Id column has been automatically created and set as the primary

key for the Books table (see the key icon next to the row). Id column’s data type is int. We will set its

Identity Seed and Identity Increment properties to 1 since we want Id to be 1 for the first book record

added, and to be automatically incremented by 1 for next book records, which means users do not have

to figure out a valid Id each time a new record is added. This is a very typical configuration for primary

keys.

However, you can choose your own custom primary key. For example, for Books table, ISBN is a good

candidate for primary key since every book has a unique ISBN. In this case, the user should provide a

unique ISBN for each new book entered. Otherwise, the system will throw an error and will not allow

adding the new record without a valid value for the primary key.

Next, in the SQL window at the bottom, please change [Table] to [Books] and add two more columns:

Title and Pages (see Figure 10). Title will have nvarchar(MAX) and Pages will have int as data types. You

can consider nvarchar as a data type to store string data. Other data types are beyond the scope of this

course. The code inside the SQL window (at the bottom) should be automatically updated based on the

changes in the design of the table.

Figure 10. Adding new columns to Books table

int

To complete the creation of the table, please click on Update button on the top of the table design view.

The following window (see Figure 11) should appear. Please click on Update Database button.

Figure 11. Updating the database to create the Books table

After this operation, the Books table should appear in the SQL Explorer window (see Figure 12).

Figure 12. The Books table is added.

We will add some manual books data. To do so, please right click on the Books table, and choose View

Data from the popup window, as shown in Figure 13.

Figure 13. Accessing the data hold in the Books table

You should be able to display the Books table like a spreadsheet (see Figure 14). Id column cannot be

edited since it will be automatically generated as new book records are added to the table.

Figure 14. Books table is initially empty

Please add several records by entering some Title and Pages values as shown in Figure 15. Id of the books

should be automatically generated and displayed.

Figure 15. Adding two book records manually

Next, we will create a new table called Authors. Please create this table with the columns shown in Figure

16. Id is the primary key for the Authors table. Please set its Identity Seed and Identity Increment

properties to 1.

Figure 16. Creating the Authors table

Next, we will add two author records to the Author table as shown in Figure 19 below.

Figure 17. Adding two new authors to the Authors table

3) Creating foreign key

We will define a new column in the Books table, named AuthorId, to store the author of the books. This

column will be a Foreign Key since it will refer to the Id column of the Authors table. In other words,

through a foreign key, we associate the Book records with Author records.

To add a foreign key, please selected the target column, and then right click on Foreign Key on the right-

hand side of the window, as shown below.

Figure 18. Adding a Foreign Key

Then, do the changes marked below in the SQL code window to configure the Foreign Key constraint. As

shown in the code line, AuthorId references the Id column of the Authors table.

Figure 19. Configuring the Foreign Key constraint.

Since a foreign key is directly mapped with a primary key of another table, foreign key cannot be assigned

with a value that does not exist in the referred primary key.

For example, we want to add author information for the books. We have two authors whose Ids are 1 and

2. We are allowed to enter only one of these two values in the AuthorId column of the Book table. If you

enter 3, you should receive an error since there is no author with id 3.

Figure 20. Adding AuthorId values in the Books table

3) Entity framework

Entity Framework (Code First) is basically a data-access technology that performs automatic mapping of

your model (created in let’s say Visual Studio through set of classes) into a relational database. In other

words, you implicitly design the underlying database for your project while working on the class structure

of your project, which is referred to as the (domain) model.

A model refers to the collection of the classes and the relationships among these classes. In Domain-
Driven Design approach, the model itself is the core of your application development. Poor models will
result in applications that are hard to develop and maintain. Whatever your model is (poor or great one),
the entity framework is responsible for converting your model (i.e., mapping) into a relational database.
So, the basic premise of Entity Framework is that programmers do not need to use a database
management system to configure the database (create database and tables, define relationships, etc.), as
we did previously above. Instead, programmers need to focus on the application itself and write the
necessary code to build the domain model as per the application requirements.

Let’s image that we are building a Book Store application. Probably, in such an application, the model will
have classes like Book, Author, Publisher, etc. To keep it simple, let’s create Book class, by using the
following declaration:

public class Book
{
 public int Id { get; set; }
 public string Title { get; set; }
 public int Year { get; set; }
}

Our (very) simple model is ready. Now, it is time to let Entity Framework map our model (composed of
only Book class) to a relational database. As you may expect, the resultant database will have a single
table, called Book, with four columns (corresponding to each of the properties in Book class).

4) Installing and Configuring Entity Framework

To be able to use Entity Framework, we need to install it and then enable it with several configurations.

We will install Entity Framework by using NuGet Packages, which is defined as “a Visual Studio extension
that makes it easy to add, remove, and update libraries and tools in Visual Studio projects that use the
.NET Framework.” (https://www.nuget.org/).

Please right-click on your project name in the Solution Explorer and choose Manage NuGet Packages as
seen in the following figure.

Figure 21. Manage NuGet Packages item

In the Browse tab, please search for EntityFrameworkCore. When Microsoft.EntityFrameworkCore
appears in the list, please select it and the click Install. See Figure 22.

Figure 22. Installing EntityFrameworkCore

If any additional windows appear for confirmation, please click I Agree. Once installed, a green checkbox

should appear next to Microsoft.EntityFrameworkCore, as seen in Figure 23 below.

Figure 23. EntityFrameworkCore is installed.

https://www.nuget.org/

Similarly, please install EntityFrameworkCore.Tools and EntityFrameworkCore.Design, as shown in Figure

24 below.

Figure 24. Installing other components of EntityFrameworkCore.

Last, you should install the Microsoft.EntityFrameworkCore.SqlServer library, as shown in Figure 25.

Figure 25. Installing other components of EntityFrameworkCore.SqlServer.

Now, EntityFramework is installed in your application. If you check the Dependencies section in the

solution explorer you should see the EntityFramework related items (see Figure 26).

Figure 26. EntityFrameworkCore package is listed in Solution Explorer.

5) Creating the DbContext file

To be able to use EntityFramework, you need to configure it. To do that, you need to add a new class (see

Figure 27) that inherits from DbContext class (which already comes with EntityFramework installation).

DbContext is the class by which you can explain your model to Entity Framework, which in turn maps your

model to a relational database. DbContext is the core class which has the logic that drives Entity

Framework Code First.

Figure 27. Adding a new class.

Please name the class file as BookDbContext (see Figure 28). Including the DbContext keyword at the
end of the class name is a good practice.

Figure 28. Creating the BookDbContext class file.

As mentioned before, the BookDbContext class needs to inherit from DbContext. When inherited from
DbContext, the BookDbContext class will be able to access all methods of DbContext, which we need to
form the database based on the model of application.

Your code file should be displayed once it is created. Please write the code to inherit BookDbContext
from DbContext as shown below. Initially, a jagged red line should appear under DbContext, indicating
an error. See Figure 29 below.

Figure 29. Inheriting from DbContext.

Once you mouse over it, you should see the error messages displayed in a tooltip. The error message tells
that DbContext class is not accessible because it is not properly imported with using statements. Visual
Studio can automatically fix this error. Please click one of the items indicated with arrows in Figure 30.

Figure 30. Displaying the potential fix window.

The potential fixes should be displayed in a small popup window as shown in Figure 31. In this window,
choose the first item (using Microsoft.EntityFramework.Core) and click on it twice to apply the automatic fix.

Figure 31. Applying the potential fix.

The required using statement should be added at the top of the code file as shown in Figure 32.

Figure 32. The using statement is added.

One important configuration in DbContext file that you will always have to do is setting the connection
string. A connection string is what your C# application needs for establishing a connection to an existing
(or to-be-created) database. To add a connection string, we will override the OnConfiguring method
of DbContext and we will pass the connection string inside the UseSqlServer method.

We will not go into further details about OnConfiguring method and DbContextOptionsBuilder within
the scope of this module and course. You can use the following code to configure the database connection
in your future projects. You will need to update the Database name accordingly in your new projects. For
this project, the database name will be BookManagement_v1.

class BookDbContext: DbContext
{
 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {

optionsBuilder.UseSqlServer(@"Server=(localdb)\mssqllocaldb;Database=BookManagement_v1");
 }
}

6) DbSet types

To ease your understand, you can just think that a DbContext corresponds to whole database. In this
database, we need tables, right? For example, in our scenario we will need a table for recording instances
of Book class. We can indicate the tables that we want in our database in DbContext class by
using DbSet type. In other words, we need to use DbSet type to tell Entity Framework that Book class
should be included when mapping the domain model to the database. Otherwise, Entity Framework will
not create a corresponding table in the database for the Book class.

The Books object with DbSet type will also act as a proxy to the Books table in the database when we
need to retrieve some book records, or when we need to create, update or delete a book entry. Below is
the updated definition of the BookDbContext file:

class BookDbContext: DbContext
{
 public DbSet<Book> Books { get; set; } //a proxy to the Books table in the database

 protected override void OnConfiguring(DbContextOptionsBuilder optionsBuilder)
 {

optionsBuilder.UseSqlServer(@"Server=(localdb)\mssqllocaldb;Database=BookManagement_v1");

 }
}

7) Using migrations to create the database for the first time

We have completed all required configurations and now we can ask EntityFramework to create the
database based on the existing configurations and the domain model.

We need to use some simple commands of EntityFramework using Package Manager Console. To open
this console, click on View menu, choose Other Windows, and then click on Package Manager Console in
the submenu. This is illustrated in Figure 33 below.

Figure 33. Opening Package Manager Console.

Package Manager Console should appear at the bottom part of the Visual Studio (see Figure 34). As its
name implies, this is a console window where you can write and execute some commands.

Figure 34. Package Manager Console.

Entity Framework uses the migrations to build and update the database based on the changes and
configurations in the domain model. Right now, we need migrations to create the database for the first
time. Later, as we do changes in our domain model (e.g., adding a new property to a class), we need to
create new migrations to update the database accordingly.

We will use Add-Migration command. Please type Add in the package manager console and press the tab
key. Matching commands should be listed. This is a useful feature when you cannot remember the whole
command. Please choose Add-Migration and press enter.

Figure 35. Finding the Add-Migration command.

You need to provide a name for the migration. Please type createDb after Add-Migration. Your console
should look like Figure 36.

Figure 36. Adding a migration.

After running the Add-Migration command, you should see the migration file automatically opened in VS
(see Figure 37). This file contains all changes to be made to the database.

Figure 37. The using statement is added.

To apply the changes in the migration file, please run the Update-Database command and press enter
as shown in Figure 38.

Figure 38. The using statement is added.

Once the command is executed, you should obtain the following output as shown in Figure 39. If you see
Done in the output without any error messages, then the database should be created successfully.

Figure 39. The using statement is added.

Then, please check the SQL Server Object Explorer window. The BookManagement_v1 database should
be available in the Databases folder, and the database should have the Books table as seen in Figure 40.

Figure 40. The using statement is added.

7) Creating a simple application to create and list books

We will create a simple application to allow user to create and list books. Please add a button (named as
btn_addBook) and listbox control (named as lst_books) to the form as shown in Figure 41.

Figure 41. The using statement is added.

When the button is clicked, we want to add a sample book record to the database. We need to first create

a book object with valid title and year values. Next, we need to create an instance of BookDbContext,

named as _db. Through _db, we can access the Books collection (which is a DbSet type as defined inside

the BookDbContext file). Since it is a DbSet, we can call the Add method and pass the book object. Last,

we need to call the SaveChanges method to ask EntityFramework to execute this add operation. The

complete code is shown in Figure 42.

Figure 42. The using statement is added.

If you go ahead and view the data in the Books table (see Figure 43), you should see the new book
record that we have just added (see Figure 44).

Figure 43. Viewing the data in the Books table.

Figure 44. New book record is added to the Books table.

Now, we want to display the existing book records in the listbox. For this purpose, we will define a method

called BindBooks. Inside this method, we will create an instance of BookDbContext, named as _db. To

fetch the book records from the database we need to call _db.Books.ToList() and assign it to the

DataSource property of lst_books. We should also set the ValueMember and DisplayMember

properties properly. The complete definition of the BindBooks method is displayed below.

Figure 45. Defining the BindBooks method.

Now, we can call this method in the form load to list the books when the application is run. We should
also call this method when a new book is created (so that it can be immediately listed). The related code
is shown below.

Figure 46. Calling the BindBooks method.

If you run your application, the single book record that we have created should be displayed in the listbox
as shown in Figure 47.

Figure 47. The book records are listed.

