STABILITY THEORY OF DYNAMIC SYSTEMS METU EE555 - FALL 2021

Instructor: Emre Tuna; E113

Web: http://users.metu.edu.tr/etuna/ee555/

Scope: This course aims to cover some of the standard methods used in the stability analysis of nonlinear systems.

Prerequisite: Some knowledge of Linear Systems (EE502) is assumed.

Textbook: H.K. Khalil. Nonlinear Systems (Third Edition). Prentice Hall, 2002.

Tentative course outline:

I. Basic concepts

- Examples of nonlinear models
- Second-order systems: phase plane, multiple equilibria, limit cycles
- Fundamental properties of differential equations: existence/uniqueness, finite escape time

II. Lyapunov Theory

- Lyapunov functions
- Linearization
- Invariance principle
- Converse theorems
- III. Various design and analysis tools
 - Backstepping
 - Input-to-state stability
 - \mathcal{L} -stability
 - Small-gain theorem
 - Passivity

IV. Discrete-time systems

- Lyapunov Theory
- Deadbeat observer