1.3 Probabilistic Models

A probabilistic model is a mathematical description of an uncertain situation. A probability model consists of an experiment, a sample space, and a probability law.

1.3.1 Experiment

Every probabilistic model involves an underlying process called the experiment

Ex: Consider the underlying experiments in the two classic probability puzzles: The girl's sibling, and the 3 -door problem.

1.3.2 Sample Space

The set of all possible results (OUTCOMES) of an experiment is called the SAMPLE SPACE (Ω) of the experiment.

Ex: List the sample spaces corresponding to the following experiments:

- Experiment 1: Toss a coin and look at the outcome.
$\Omega=$
- Experiment 2: Toss a coin until you get "Heads". $\Omega=$
- Experiment 3: Throw a dart into a circular region of radius r, and check how far it fell from the center.
- Experiment 4: Pick a point (x, y) on the unit square.
- Experiment 5: A family has two children.
- Experiment 6: I select a door, one of the three doors is concealing a prize.

Definition 2 An event is a subset of the sample space Ω.

- Ω : certain event, \emptyset : impossible event
- TRIAL: single performance of an experiment
- An event A is said to have OCCURRED if the outcome of the trial is in A.
- A given physical situation may be modeled in many different ways. The sample space should be chosen appropriately with regard to the intended goal of modeling.
- Sequential models: tree-based sequental description

Ex: Consider two rounds of the double-and-quarter game and list all possible outcomes. Consider three tosses of a coin and write all possible outcomes.
a model for the frequency with which the experiment produces a value in A when repeated many times independently.

Ex:

Probability Axioms

1. (Nonnegativity) $P(A) \geq 0$ for every event A
2. (Additivity) If A and B are two disjoint events, then

$$
P(A \cup B)=P(A)+P(B)
$$

More generally, if the sample space has an infinite number of elements and A_{1}, A_{2}, \ldots is a sequence of disjoint events, then

$$
P\left(A_{1} \cup A_{2} \cup \ldots\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\ldots
$$

3. (Normalization) $P(\Omega)=1$

1.3.4 Properties of Probability Laws

(a) $P(\emptyset)=0$
(b) $P\left(A^{c}\right)=1-P(A)$
(c) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
(d) $A \subset B \Rightarrow P(A) \leq P(B)$
(e) $P(A \cup B) \leq P(A)+P(B)\left(P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)\right)$
(f) $P(A \cup B \cup C)=P(A)+P\left(A^{c} \cap B\right)+P\left(A^{c} \cap B^{c} \cap C\right)$

