METU EE230 Spring 2012 E. Uysal-Biyikoglu

19

1.6 Independence

Definition: $P(A \cap B) = P(A)P(B)$

- If P(A) > 0, independence implies P(B|A) = P(B).
- Symmetrically, if P(B) > 0, independence implies P(A|B) = P(A).
- Show that, if A and B are independent, so are A and B^c. (If A is independent of B, the occurrence (or non-occurrence) of B does not convey any information about A.)
- Show that, if A and B are disjoint, they are always dependent.

Ex: Consider two independent rolls of a tetrahedral die.

(a) Let A_i = {the first outcome is i}. Let B_j = {the second outcome is j}. "Independent rolls" implies A_i and B_j are independent for any i and j. Find P(A_i, B_j).

(b) Let $A = \{$ the max of the two rolls is 2 $\}$. Let $B = \{$ the min of the two rolls is 2 $\}$. Are A and B independent?

METU EE230 Spring 2012 E. Uysal-Biyikoglu

(c) Note that independence can be counter-intuitive. For example, let $A_2 = \{$ the first roll is 2 $\}$. Let $S_5 = \{$ the sum of the two rolls is 5 $\}$. Show that A_2, S_5 are independent, although the sum of the two rolls and the first roll are dependent in general (try A_2, S_6 as a counterexample.)

1.6.1 Conditional Independence

Recall that conditional probabilities form a legitimate probability law. So, A and B are independent, conditional on C, if

 $P(A \cap B|C) = P(A|C)P(B|C)$

Show that this implies

 $P(A|B \cap C) = P(A|C)$

(assuming $P(B|C) \neq 0$, $P(C) \neq 0$.)

METU EE230 Spring 2012 E. Uysal-Biyikoglu

21

Conditioning may affect independence.

Ex: Assume A and B are independent, but $A \cap B \cap C = \emptyset$. If we are told that C occurred, are A and B independent? (draw Venn Diagram exhibiting a counterexample.)

Ex: Two unfair coins, A and B.

P(H|coinA) = 0.9, P(H|coinB) = 0.1

Choose either coin with equal probability.

- Once we know it is coin A, are future tosses independent.
- If we don't know which coin it is, are future tosses independent?
- Compare

P(5th toss is a T)

and P(5th toss is a T|first 4 tosses are T).

Independence of a collection of events: Information on some of the events tells us nothing about the occurrence of the others.

METU EE230 Spring 2012 E. Uysal-Biyikoglu

- Events A_i , i = 1, 2, ..., n are independent iff $P(\bigcap_{i \in S} A_i) = \pi_{i \in S} P(A_i)$ for any $S \subset \{1, 2, ..., n\}$
- Note that

 $P(A_5 \cup A_2 \cap (A_1 \cup A_4)^c | A_3 \cup A_6^c) = P(A_5 \cup A_2 \cap (A_1 \cup A_4)^c)$

- Pairwise independence does not imply independence! (Checking P(A_i∩ A_j) = P(A_i)P(A_j) for all i and j is not sufficient for confirming independence.)
- For three events, checking P(A₁ ∩ A₂ ∩ A₃) = P(A₁)P(A₂)P(A₃) is not enough for confirming independence.

Ex: Consider two independent tosses of a fair coin. A = First toss is H.

B = Second toss is H.

C = First and second toss have the same outcome. Are these events pairwise independent?

P(C) = $P(C \cap A) =$ $P(C \cap A \cap B) =$ $P(C|B \cap A) =$

METU EE230 Spring 2012 E. Uysal-Biyikoglu

23

Ex: Network Connectivity: In the electrical network in Fig. 1.2, each circuit element is "on" with probability p, independently of all others. What is the probability that there is a connection between points A and B?

Figure 1.1: Electrical network with randomly operational elements.