1.6 Independence

Definition: $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$

- If $\mathrm{P}(A)>0$, independence implies $\mathrm{P}(B \mid A)=\mathrm{P}(B)$.
- Symmetrically, if $\mathrm{P}(B)>0$, independence implies $\mathrm{P}(A \mid B)=\mathrm{P}(A)$.
- Show that, if A and B are independent, so are A and B^{c}. (If A is independent of B, the occurrence (or non-occurrence) of B does not convey any information about A.)
- Show that, if A and B are disjoint, they are always dependent.

Ex: Consider two independent rolls of a tetrahedral die.
(a) Let $A_{i}=\{$ the first outcome is $i\}$. Let $B_{j}=\{$ the second outcome is j \}. "Independent rolls" implies A_{i} and B_{j} are independent for any i and j. Find $P\left(A_{i}, B_{j}\right)$.
(b) Let $A=\{$ the max of the two rolls is 2$\}$. Let $B=\{$ the min of the two rolls is 2$\}$. Are A and B independent?
(c) Note that independence can be counter-intuitive. For example, let $A_{2}=\{$ the first roll is 2$\}$. Let $S_{5}=\{$ the sum of the two rolls is 5$\}$. Show that A_{2}, S_{5} are independent, although the sum of the two rolls and the first roll are dependent in general (try A_{2}, S_{6} as a counterexample.)

1.6.1 Conditional Independence

Recall that conditional probabilities form a legitimate probability law. So, A and B are independent, conditional on C, if

$$
\mathrm{P}(A \cap B \mid C)=\mathrm{P}(A \mid C) \mathrm{P}(B \mid C)
$$

Show that this implies

$$
\mathrm{P}(A \mid B \cap C)=\mathrm{P}(A \mid C)
$$

(assuming $\mathrm{P}(B \mid C) \neq 0, \mathrm{P}(C) \neq 0$.)

Conditioning may affect independence.

Ex: Assume A and B are independent, but $A \cap B \cap C=\emptyset$. If we are told that C occurred, are A and B independent? (draw Venn Diagram exhibiting a counterexample.)

Ex: Two unfair coins, A and B.

$$
\mathrm{P}(H \mid \operatorname{coin} \mathrm{A})=0.9, \mathrm{P}(\mathrm{H} \mid \operatorname{coin} \mathrm{B})=0.1
$$

Choose either coin with equal probability.

- Once we know it is coin A, are future tosses independent.
- If we don't know which coin it is, are future tosses independent?
- Compare

$$
\mathrm{P}(5 \text { th toss is a } \mathrm{T})
$$

and $\mathrm{P}(5$ th toss is a $\mathrm{T} \mid$ first 4 tosses are T$)$.

Independence of a collection of events: Information on some of the events tells us nothing about the occurrence of the others

- Events $A_{i}, i=1,2, \ldots, n$ are independent iff $\mathrm{P}\left(\cap_{i \in S} A_{i}\right)=\pi_{i \in S} \mathrm{P}\left(A_{i}\right)$ for any $S \subset\{1,2, \ldots, n\}$
- Note that

$$
\mathrm{P}\left(A_{5} \cup A_{2} \cap\left(A_{1} \cup A_{4}\right)^{c} \mid A_{3} \cup A_{6}^{c}\right)=\mathrm{P}\left(A_{5} \cup A_{2} \cap\left(A_{1} \cup A_{4}\right)^{c}\right)
$$

- Pairwise independence does not imply independence! (Checking $\mathrm{P}\left(A_{i} \cap\right.$ $\left.A_{j}\right)=\mathrm{P}\left(A_{i}\right) \mathrm{P}\left(A_{j}\right)$ for all i and j is not sufficient for confirming independence.)
- For three events, checking $\mathrm{P}\left(A_{1} \cap A_{2} \cap A_{3}\right)=\mathrm{P}\left(A_{1}\right) \mathrm{P}\left(A_{2}\right) \mathrm{P}\left(A_{3}\right)$ is not enough for confirming independence.

Ex: Consider two independent tosses of a fair coin. $A=$ First toss is H.
$B=$ Second toss is H .
$C=$ First and second toss have the same outcome.
Are these events pairwise independent?

$$
\begin{aligned}
\mathrm{P}(C) & = \\
\mathrm{P}(C \cap A) & = \\
\mathrm{P}(C \cap A \cap B) & = \\
\mathrm{P}(C \mid B \cap A) & =
\end{aligned}
$$

Ex: Network Connectivity: In the electrical network in Fig. 1.2, each circuit element is "on" with probability p, independently of all others. What is the probability that there is a connection between points A and B?

Figure 1.1: Electrical network with randomly operational elements.

