
Chapter 2

Discrete Random Variables

2.1 Preliminaries

Definition 4 A random variable is a mapping (a function) from the sam-

ple space into real numbers.

• We can define an arbitrary number of different random variables on

the same sample space.

Ex: Toss a fair 6-sided die. Let the random variableX take on the value

1 if the outcome is 6, and 0 otherwise. Let the random variable Y be equal

to the outcome of the die. Illustrate the mappings from the sample space

associated with X and Y . (Note that {X = 1} = {outcome is 6} = A,

and {X = 0} = Ac.)

28

METU EE230 Spring 2012 E. Uysal-Biyikoglu 29

Definition 5 A discrete random variable takes a discrete set of values.

The Probability Mass Function (PMF) of a discrete random variable is

defined as

pX(x) = P(X = x)

Ex: Find and plot the PMFs of X and Y defined in the previous

example.

• A discrete random variable is completely characterized by its PMF.

Ex: Let M be the maximum of the two rolls of a fair die. Find pM(m)

for all m. (Think of the sample space description and the sets of outcomes

where M takes on the value m.)
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2.2 Some Discrete Random Variables

2.2.1 The Bernoulli Random Variable

In the rest of this course, we shall define the Bernoulli random variable

with parameter p as the following:

X =







1 with probability p

0 with probability 1− p

In shorthand we say X ∼Ber(p).

Ex: Express and sketch the PMF of a Bernoulli(p) random variable.

Despite its simplicity, the Bernoulli r.v. is very important since it can

model generic probabilistic situations with just two outcomes (often re-

ferred to as binary r.v.).

Examples:

• Indicator function: Consider the random variable X defined previ-

ously. X(w) = 1 if outcome w ∈ A, and X(w) = 0 otherwise. So,

X indicates whether the outcome is in set A or Ac. X, a Bernoulli

random variable, is sometimes called the “indicator function” of the
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event A. This is sometimes denoted as X(w) = IA(w).

• Consider n tosses of a coin. Let Xi = 1 if the ith roll comes up H, and

Xi = 0 if it comes up T. Each of the Xi’s are independent Bernoulli

random variables. The Xi’s, i = 1, 2, . . . are a sequence of independent

“Bernoulli Trials”.

• Let Z be the total number of successes in n independent Bernoulli tri-

als. Express Z in terms of n independent Bernoulli random variables.

2.2.2 The Geometric Random Variable

Consider a sequence of independent Bernoulli trials where the probabil-

ity of success in each trial is p (We will later call this a “Bernoulli Process”.)

Let Y be the number of trials up to and including the first success. Y is a

Geometric random variable with parameter p.

P(Y = k) = for k =
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Sketch pY (k) for all k.

Check that this is a legitimate PMF.

Ex: Let Z be the number of trials up to (but not including) the first

success. Find and sketch pZ(z).

2.2.3 The Binomial Random Variable

Consider n independent Bernoulli Trials each with probability of success

p, and let B be the number of successes in the n trials. B is Binomial with

parameters (n, p).
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P(B = k) = for k =

Ex: Let R be the number of Heads in n independent tosses of a coin

with bias p.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

k

p
X
(k

)

n=7, p=0.25

!5 0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

k

p
X
(k

)

n=40, p=0.25



METU EE230 Spring 2012 E. Uysal-Biyikoglu 34

2.2.4 The Poisson Random Variable

A Poisson random variable X with parameter λ has the PMF

pX(k) =
λke−λ

k!
, k = 0, 1, 2, . . .

Ex: Show that
∑

k pX(k) = 1 (Hint: use the Taylor series expansion of

eλ.

• The Binomial is a good approximation for the Poisson with λ = np

when n is very large and p is small, for small values of k. That is, if

k ≪ n
λke−λ

k!
≈

n!

k!(n− k)!
pk(1− p)(n−k)

2.2.5 The Discrete Uniform R.V.

The discrete uniform random variable takes consecutive integer values

within a finite range with equal probability. That is, X is Discrete Uniform

in [a, b], b > a if and only if

pX(k) = 1/(b− a+ 1) for k = a, a+ 1, a+ 2, . . . , b

Ex: A four-sided die is rolled. Let X be equal to the outcome, Y be

equal to the outcome divided by three, and Z be equal to the square of the

outcome.
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(Note that Y and Z both take four equally likely values, however they do

not have the discrete uniform distribution.)

2.3 Functions of Random Variables

Y = f(X)

Ex: Let X be the temperature in Celsius, and Y be the temperature

in Fahrenheit. Clearly, Y can be obtained if you know X.

Y = 1.8X + 32

Ex: P(Y ≥ 14) = P(X ≥?)

Ex: A uniform r.v. X whose range is the integers in [−2, 2]. It is passed

through a transformation Y = |X|.

To obtain pY (y) for any y, we add the probabilities of the values x that

results in g(x) = y:

pY (y) =
∑

x:g(x)=y

pX(x).

Ex: A uniform r.v. whose range is the integers in [−3, 3]. It is passed
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through a transformation Y = u(X) where u(·) is the discrete unit step

function.

2.4 Expectation, Mean, and Variance

We are sometimes interested in a summary of certain properties of a

random variable.

Ex: Instead of comparing your grade with each of the other grades in

class, as a first approximation you could compare it with the class average.

Ex: A fair die is thrown in a casino. If 1 or 2 shows, the casino will pay

you a net amount of 30, 000 TL (so they will give you your money back

plus 30,000), if 3, 4, 5 or 6 shows you they will take the money you put

down. Up to how much would you pay to play this game?

Ex: Alternatively, suppose they give you a total of 30, 000 if you win

(regardless of how much you put down), and nothing if you lose. How

much would you pay to play this game?

(answer: the value of the first game (the break-even point) is 15,000,

and for the second game, it is 10,000. In the second game, you expect to

get 30,000 with probability 1/3, so you expect to get 10,000 on average.)


