2.4 Expectation and Variance

We are sometimes interested in a summary of certain properties of a random variable.

Ex: Instead of comparing your grade with each of the other grades in class, as a first approximation you could compare it with the class average.

Ex: A fair die is thrown in a casino. If 1 or 2 shows, the casino will pay you a net amount of $30,000 \mathrm{TL}$ (so they will give you your money back plus 30,000), if $3,4,5$ or 6 shows you they will take the money you put down. Up to how much would you pay to play this game?

Ex: Alternatively, suppose they give you a total of 30,000 if you win (regardless of how much you put down), and nothing if you lose. How much would you pay to play this game?
(Answer: the value of the first game (the break-even point) is 15,000 , and for the second game, it is 10,000 . In the second game, you expect to get 30,000 with probability $1 / 3$, so you expect to get 10,000 on average.)
Definition 6 The expected value or mean of a discrete r.v. X is defined as

$$
E[X]=\sum_{x} x P(X=x)=\sum_{x} x p_{X}(x) .
$$

The intuition for the definition is a weighted some of the values the r.v. takes, where the weights are the probability masses of these values.

The mean of X is a representative value, which lies somewhere in the middle of its range. The definition above tells us that the mean corresponds to the center of gravity of the PMF.

Ex: Let X be your net earnings in the (first) Casino problem above, where you put down $12,000 \mathrm{TL}$ to play the game. Find $E(X)$.

Answer: $E(X)=2000$ (You expect to make money, and the Casino expects to lose money. A more realistic Casino would charge you something strictly more than 15,000 , so that they can expect to make a profit.)

2.4.1 Variance, Moments, and the Expected Value Rule

A very important quantity that provides a measure of the spread of X around its mean is variance

$$
\begin{equation*}
\operatorname{var}(X)=E\left[(X-E[X])^{2}\right] \tag{2.1}
\end{equation*}
$$

The variance is always nonnegative. One way to calculate $\operatorname{var}(X)$ is to use the PMF of $(X-E[X])^{2}$.

Ex: Find the variance of the random variables X with the following PMFs.
(a) $p_{X}(15)=p_{X}(20)=p_{X}(25)=1 / 3$.
(b) $p_{X}(15)=p_{X}(25)=1 / 2$.

The standard deviation of X is also a measure of the spread of X around its mean: $\sigma_{X}=\sqrt{\operatorname{var}(X)}$. It is usually simpler to interpret since it has the same units as X.

Another way to evaluate $\operatorname{var}(X)$ is by using the following result.
Theorem 2 Let X be a r.v. with PMF $p_{X}(x)$ and $g(X)$ be a function of X. Then,

$$
E[g(X)]=\sum_{x} g(x) p_{X}(x) .
$$

Proof: Exercise

Note: Unless $g(x)$ is a linear function, $E[g(X)]$ is in general not equal to $g(E[X])$.

Ex: When I listen to Radyo ODTU in the morning, I drive at a speed of 50 km per hour, and otherwise I drive at 70 km per hour. Suppose I listen to Radyo ODTU with probability 0.3 on any given day. What is the average duration of my 5 km trip to work?
Answer: 4.8 minutes.

Notes: The trip duration T is a nonlinear function $T=D / V$ of the speed V. In fact it is a convex function, which means $E[g(X)]>g(E[X])$. So it would be wrong to calculate the expected speed, which is $0.3^{*} 50+0.7^{*} 70=64$ $\mathrm{km} /$ hour, and find the expected duration as $5 / 64^{*} 60=4.68 \mathrm{~min}$.

