1.6 Independence

Definition: $P(A \cap B) = P(A)P(B)$

- If P(A) > 0, independence implies P(B|A) = P(B).
- Symmetrically, if P(B) > 0, independence implies P(A|B) = P(A).
- Show that, if A and B are independent, so are A and B^c . (If A is independent of B, the occurrence (or non-occurrence) of B does not convey any information about A.)
- Show that, if A and B are disjoint, they are always dependent.

Ex: Consider two independent rolls of a tetrahedral die.

- (a) Let $A_i = \{$ the first outcome is $i \}$. Let $B_j = \{$ the second outcome is $j \}$. "Independent rolls" implies A_i and B_j are independent for any i and j. Find $P(A_i, B_j)$.
- (b) Let $A = \{\text{the max of the two rolls is 2}\}$. Let $B = \{\text{the min of the two rolls is 2}\}$. Are A and B independent?

(c) Note that independence can be counter-intuitive. For example, let $A_2 = \{\text{the first roll is 2}\}$. Let $S_5 = \{\text{the sum of the two rolls is 5}\}$. Show that A_2, S_5 are independent, although the sum of the two rolls and the first roll are dependent in general (try A_2, S_6 as a counterexample.)

1.6.1 Conditional Independence

Recall that conditional probabilities form a legitimate probability law. So, A and B are independent, conditional on C, if

$$P(A \cap B|C) = P(A|C)P(B|C)$$

Show that this implies

$$P(A|B \cap C) = P(A|C)$$

(assuming $P(B|C) \neq 0$, $P(C) \neq 0$.)

Conditioning may affect independence.

Ex: Assume A and B are independent, but $A \cap B \cap C = \emptyset$. If we are told that C occurred, are A and B independent? (draw Venn Diagram exhibiting a counterexample.)

Ex: Two unfair coins, A and B.

$$P(H|coinA) = 0.9, P(H|coinB) = 0.1$$

Choose either coin with equal probability.

- \bullet Once we know it is coin A, are future tosses independent.
- If we don't know which coin it is, are future tosses independent?
- Compare

and P(5th toss is a T|first 4 tosses are T).

Independence of a collection of events: Information on some of the events tells us nothing about the occurrence of the others.

- Events A_i , i = 1, 2, ..., n are independent iff $P(\cap_{i \in S} A_i) = \pi_{i \in S} P(A_i)$ for any $S \subset \{1, 2, ..., n\}$
- Note that

$$P(A_5 \cup A_2 \cap (A_1 \cup A_4)^c | A_3 \cup A_6^c) = P(A_5 \cup A_2 \cap (A_1 \cup A_4)^c)$$

- Pairwise independence does not imply independence! (Checking $P(A_i \cap A_j) = P(A_i)P(A_j)$ for all i and j is not sufficient for confirming independence.)
- For three events, checking $P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$ is not enough for confirming independence.

Ex: Consider two independent tosses of a fair coin. A =First toss is H.

B =Second toss is H.

C =First and second toss have the same outcome.

Are these events pairwise independent?

$$P(C) =$$

$$P(C \cap A) =$$

$$P(C \cap A \cap B) =$$

$$P(C|B \cap A) =$$

Ex: Network Connectivity: In the electrical network in Fig. 1.2, each circuit element is "on" with probability p, independently of all others. What is the probability that there is a connection between points A and B?

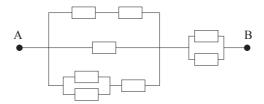


Figure 1.1: Electrical network with randomly operational elements.