Chapter 2

Discrete Random Variables

2.1 Preliminaries

Definition $4 A$ random variable is a mapping (a function) from the sample space into real numbers.

- We can define an arbitrary number of different random variables on the same sample space.

Ex: Toss a fair 6 -sided die. Let the random variable X take on the value 1 if the outcome is 6 , and 0 otherwise. Let the random variable Y be equal to the outcome of the die. Illustrate the mappings from the sample space associated with X and Y. (Note that $\{X=1\}=\{$ outcome is 6$\}=A$, and $\{X=0\}=A^{c}$.)

Definition 5 A discrete random variable takes a discrete set of values. The Probability Mass Function (PMF) of a discrete random variable is defined as

$$
p_{X}(x)=\mathrm{P}(X=x)
$$

Ex: Find and plot the PMFs of X and Y defined in the previous example.

- A discrete random variable is completely characterized by its PMF.

Ex: Let M be the maximum of the two rolls of a fair die. Find $p_{M}(m)$ for all m. (Think of the sample space description and the sets of outcomes where M takes on the value m.)

2.2 Some Discrete Random Variables

2.2.1 The Bernoulli Random Variable

In the rest of this course, we shall define the Bernoulli random variable with parameter p as the following:

$$
X= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

In shorthand we say $X \sim \operatorname{Ber}(p)$.
Ex: Express and sketch the PMF of a Bernoulli(p) random variable.

Despite its simplicity, the Bernoulli r.v. is very important since it can model generic probabilistic situations with just two outcomes (often referred to as binary r.v.).

Examples:

- Indicator function: Consider the random variable X defined previously. $X(w)=1$ if outcome $w \in A$, and $X(w)=0$ otherwise. So, X indicates whether the outcome is in set A or A^{c}. X, a Bernoulli random variable, is sometimes called the "indicator function" of the
event A. This is sometimes denoted as $X(w)=I_{A}(w)$.
- Consider n tosses of a coin. Let $X_{i}=1$ if the $i^{\text {th }}$ roll comes up H, and $X_{i}=0$ if it comes up T. Each of the X_{i} 's are independent Bernoulli random variables. The $X_{i}{ }^{\prime}$ s, $i=1,2, \ldots$ are a sequence of independent "Bernoulli Trials".
- Let Z be the total number of successes in n independent Bernoulli trials. Express Z in terms of n independent Bernoulli random variables.

2.2.2 The Geometric Random Variable

Consider a sequence of independent Bernoulli trials where the probability of success in each trial is p (We will later call this a "Bernoulli Process".) Let Y be the number of trials up to and including the first success. Y is a Geometric random variable with parameter p.

$$
\mathrm{P}(Y=k)=\quad \text { for } k=
$$

Sketch $p_{Y}(k)$ for all k.

Check that this is a legitimate PMF.

Ex: Let Z be the number of trials up to (but not including) the first success. Find and sketch $p_{Z}(z)$.

2.2.3 The Binomial Random Variable

Consider n independent Bernoulli Trials each with probability of success p, and let B be the number of successes in the n trials. B is Binomial with parameters (n, p).

$$
\mathrm{P}(B=k)=\quad \text { for } k=
$$

Ex: Let R be the number of Heads in n independent tosses of a coin with bias p.

2.2.4 The Poisson Random Variable

A Poisson random variable X with parameter λ has the PMF

$$
p_{X}(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}, \quad k=0,1,2, \ldots
$$

Ex: Show that $\sum_{k} p_{X}(k)=1$ (Hint: use the Taylor series expansion of e^{λ}.

- The Binomial is a good approximation for the Poisson with $\lambda=n p$ when n is very large and p is small, for small values of k. That is, if $k \ll n$

$$
\frac{\lambda^{k} e^{-\lambda}}{k!} \approx \frac{n!}{k!(n-k)!} p^{k}(1-p)^{(n-k)}
$$

2.2.5 The Discrete Uniform R.V.

The discrete uniform random variable takes consecutive integer values within a finite range with equal probability. That is, X is Discrete Uniform in $[a, b], b>a$ if and only if

$$
p_{X}(k)=1 /(b-a+1) \text { for } k=a, a+1, a+2, \ldots, b
$$

Ex: A four-sided die is rolled. Let X be equal to the outcome, Y be equal to the outcome divided by three, and Z be equal to the square of the outcome.
(Note that Y and Z both take four equally likely values, however they do not have the discrete uniform distribution.)

2.3 Functions of Random Variables

$$
Y=f(X)
$$

Ex: Let X be the temperature in Celsius, and Y be the temperature in Fahrenheit. Clearly, Y can be obtained if you know X.

$$
Y=1.8 X+32
$$

Ex: $\mathrm{P}(Y \geq 14)=\mathrm{P}(X \geq$? $)$

Ex: A uniform r.v. X whose range is the integers in $[-2,2]$. It is passed through a transformation $Y=|X|$.

To obtain $p_{Y}(y)$ for any y, we add the probabilities of the values x that results in $g(x)=y$:

$$
p_{Y}(y)=\sum_{x: g(x)=y} p_{X}(x) .
$$

Ex: A uniform r.v. whose range is the integers in $[-3,3]$. It is passed
through a transformation $Y=u(X)$ where $u(\cdot)$ is the discrete unit step function.

2.4 Expectation, Mean, and Variance

We are sometimes interested in a summary of certain properties of a random variable.

Ex: Instead of comparing your grade with each of the other grades in class, as a first approximation you could compare it with the class average.

Ex: A fair die is thrown in a casino. If 1 or 2 shows, the casino will pay you a net amount of $30,000 \mathrm{TL}$ (so they will give you your money back plus 30,000), if $3,4,5$ or 6 shows you they will take the money you put down. Up to how much would you pay to play this game?

Ex: Alternatively, suppose they give you a total of 30,000 if you win (regardless of how much you put down), and nothing if you lose. How much would you pay to play this game?
(answer: the value of the first game (the break-even point) is 15,000 , and for the second game, it is 10,000 . In the second game, you expect to get 30,000 with probability $1 / 3$, so you expect to get 10,000 on average.)

