2.7.3 Iterated expectation

Using the total expectation theorem lets us compute the expectation of a random variable iteratively: To compute $E(X)$, first determine $E(X \mid Y)$, then use:

$$
E(X)=E[E(X \mid Y)]
$$

The outer expectation is over the marginal distribution of Y. This follows from the total expectation theorem, because it is simply a restatement of:

$$
E(X)=\sum_{y} E(X \mid Y=y) p_{Y}(y)==E[E(X \mid Y)]
$$

(recall that $E(X \mid Y)$ is a random variable, taking values $E(X \mid Y=y)$ with probability $\left.p_{Y}(y).\right)$

Ex: The joint PMF of the random variables X and Y takes the values $[3 / 12,1 / 12,1 / 6,1 / 6,1 / 6,1 / 6]$ at the points $[(-1,2),(1,2),(1,1),(2,1),(-1,-1),(1,-1)]$, respectively. Compute $E(X)$ using iterated expectations.

Ex: Consider three rolls of a fair die. Let X be the total number of 6 's, and Y be the total number of 1's. Note that $E(X)=1 / 2$. Confirm this result by computing $E(X \mid Y)$ and then $E(X)$ using iterated expectations.

2.8 Independence

The results developed here will be based on the independence of events we covered in before. Two events A and B are independent if $\mathrm{P}(A \cap B)=$ $\mathrm{P}(A, B)=\mathrm{P}(A) \mathrm{P}(B)$.

2.9 Independence of a R.V. from an Event

Definition 7 The random variable X is independent of the event A if

$$
\mathrm{P}(\{X=x\} \cap A)=\mathrm{P}(X=x) \mathrm{P}(A)=p_{X}(x) \mathrm{P}(A)
$$

for all x.

Ex: Consider two tosses of a coin. Let X be the number of heads and let A be the event that the number of heads is even. Show that X is NOT independent of A.

