## Chapter 3

## General Random Variables

### 3.1 Continuous Random Variables

Definition 9 A random variable $X$ is continuous if there is a nonnegative function $f_{X}$, called the probability density function (PDF) such that

$$
P(X \in B)=\int_{x \in B} f_{X}(x) d x
$$

for every subset $B$ of the real line.
The probability that the value of $X$ falls within an interval is

$$
\mathrm{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x
$$

which can be interpreted as the area under the graph of the PDF.

### 3.1.1 Properties of PDF

If $f_{X}(x)$ is a PDF , the following hold.

1. Nonnegativity: $f_{X}(x) \geq 0$
2. Normalization property:
3. (for small $\delta$ ) $\mathrm{P}(x<X \leq x+\delta)=\int_{x}^{x+\delta} f_{X}(a) d a \approx$

By the last item, $f_{X}(x)$ can be viewed as the "probability mass per unit length near x ". Although it is used to evaluate probabilities of some events, $f_{X}(x)$ is not itself an event's probability. It tells us the relative concentration of probability around the point $x$.

Ex: $\left(f_{X}(x)\right.$ may be larger than 1$)$

$$
f_{X}(x)=\left\{\begin{array}{cc}
c x^{2} & , 0 \leq x \leq 1 \\
0 & , o . w
\end{array}\right.
$$

1. Find $c$.
2. Find $P\left(|X|^{2} \leq 0.5\right)$.

Ex: (A PDF can take arbitrarily large values) Sketch the following PDF.

$$
f_{X}(x)=\left\{\begin{array}{cc}
c /(\sqrt{x}) & ,|x| \leq 2 \\
0 & , \text { o.w }
\end{array}\right.
$$

### 3.1.2 Some Continuous Random Variables and Their PDFs

## Continuous Uniform R.V.

We sometimes have information only about the interval of a random variable and nothing else. A PDF used very commonly in such a case is

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & , a<x<b \\
0 & , \text { o.w }
\end{array}\right.
$$



Figure 3.1: Uniform PDF

## Gaussian R.V.

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$



Figure 3.2: Gaussian (normal) PDF

## Exponential R.V.

An exponential r.v. has the following PDF

$$
f_{X}(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0, & \text { o.w. }\end{cases}
$$

where $\lambda$ is a positive parameter.


Figure 3.3: Exponential PDF

