Ex: Find the PDF of $Y=g(X)=X^{2}$ in terms of the PDF of $X, f_{X}(x)$.

Ex: Show that, if $Y=a X+b$, where X has $\operatorname{PDF} f_{X}(x)$, and $a \neq 0$ and b are scalars, $f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)$. Note the following special case: $f_{-X}(x)=f_{X}(-x)$.

Ex: Show that a linear function of a Normal random variable is Normal. (exercise.)

4.1.1 Functions of Two Random Variables

Ex: Let X and Y be both uniformly distributed in $[0,1]$ and independent. Let $Z=X Y$. Find the PDF of Z.

Ex: Let X and Y be two independent discrete random variables. Express the PMF of $Z=X+Y$ in terms of the PMFs $p_{X}(x)$ and $p_{Y}(y)$ of X and Y. Do you recognize this expression?

Ex: Let X and Y be two independent continuous random variables. Show that, similarly to the discrete case, the PDF of $Z=X+Y$ is given by the "convolution" of the PDFs $f_{X}(x)$ and $f_{Y}(y)$ of X and Y.

