Ex: Variance in the hat problem.

Ex: Let $X_{1}, X_{2}, X_{3}, \ldots$, be a sequence of IID Bernoulli (p) random variables (this "random sequence" is also called a "Bernoulli Process"). For concreteness, suppose that X_{i} stands for the result of the $i^{\text {th }}$ trial in a sequence of independent trials, such that $X_{i}=1$ if the trial is a success, and $X_{i}=0$ if the trial does not result in a success.

1. Find $\operatorname{cov}\left(X_{i}, X_{j}\right)$ for any i and j.
2. For every $i=1,2, \ldots$ if trial i is successful, we toss fair a coin. If the coin comes up H , we let $Y_{i}=1$. Otherwise, the value of Y_{i} is set to zero. Find $\operatorname{cov}\left(Y_{i}, Y_{j}\right)$ and $\operatorname{cov}\left(X_{i}, Y_{j}\right)$ for all i and j.
3. Now, let $Z_{i}=1$ whenever $X_{i}=1$ and the coin toss comes up T. Find $\operatorname{cov}\left(Y_{i}, Z_{i}\right)$. What is sign of the correlation coefficient for Y and Z ?
