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First Week Kinematics of Motion

Assume all the motion is along a given line.

The position can be specified by a unique number: distance from
origin O.
One side is denoted as "+" , the other side "-"
The choice of O and the "+" side is completely arbitrary

A B

O

xi = +3.0 cm

xf = −1.0cm
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First Week Kinematics of Motion

Definitions:

Displacement: the change in the position of an object ∆x .

∆x = (final position)− (initial position)
= (3.0 cm)− (−1.0 cm) = 4.0 cm (1)

Average velocity: If ∆t is the time that an object moves by ∆x ,
average velocity is

v̄ =
∆x
∆t

(2)
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Greek Letters
∆: Finite differences of any size
δ: Finite differences of small size
d : Infinitesimal difference (smaller
than anything else)



First Week Kinematics of Motion

x(t)

O t

A

1.0 s
0.2 m

B

4.0 s

3.2 m

|∆x |

|∆t |α

v̄AB =
(3.2 m)− (0.2 m)

(4.0 s)− (1.0 s)
= 1.0 m/s = tanα

(3)
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First Week Kinematics of Motion

As the final time moves closer to the initial time, i.e. the point B
moves towards point A, we obtain the instantaneous velocity:

vinst = lim
B→A

v̄AB = lim
tf→ti

∆x
∆t

= lim
tf→ti

xf − xi

tf − ti
=

dx
dt

≡ v

(4)

If δt is a sufficiently small amount of time, the displacement during
this time is δx = vδt

xf = xi + vδt (5)
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First Week Kinematics of Motion

Question
If v(t) is know for all t ∈ (ti , tf ), and a particle is at the position
x(ti) = x0 initially, how can we find x(t) for any t ∈ (ti , tf )?

A: Assume δt is sufficiently small and tf = ti + Nδt .

x(ti + δt)− x(ti) = v(ti)δt
x(ti + 2δt)− x(ti + δt) = v(ti + δt)δt

x(ti + 3δt)− x(ti + 2δt) = v(ti + 2δt)δt
· · ·

x(ti + Nδt = tf )− x(ti + (N − 1)δt) = v(t2 + (N − 1)δt) (6)

x(tf )− x0 =
N−1∑
k=0

v(ti + kδt)δt

δt→0−→
∫ tf

ti
v(t)dt

(7)

Read Zeno’s paradox!
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First Week Kinematics of Motion

Special Case: Motion with constant velocity v0:
In this case

x(tf )− x0 =
N−1∑
k=0

v(ti + kδt)δt =
N−1∑
k=0

v0δt = v0Nδt = v0(tf − ti) (8)

x(t) = v0(t − ti) + x0 (9)

Note that for motion with constant velocity v̄ = v0. Hence ∆x = v0∆t
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First Week Kinematics of Motion

The same steps can be repeated for the change of velocity.
ā = ∆v

∆t . The unit of acceleration is m/s2

ainst = lim∆t→0
∆v
∆t ≡ a

v(t) = v(t0) +
∫ tf

t0
a(t ′)dt ′
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Acceleration is in the direction of ∆v ,
NOT in the direction of v .



First Week Kinematics of Motion

Example:

Motion with Constant Acceleration. Initial conditions: x(0) = 0,
v(0) = 0. Realistic case: You stand at the top of a building. You are
holding a mass m in your and release it from rest outside a window.

Let a be the constant acceleration.

v(t) = v(0) +

∫ t

0
adt ′ = at (10)

The position:

x(t) = x(0) +

∫ t

0
v(t ′)dt ′

=

∫ t

0
(at ′)dt ′ =

1
2

at ′2
∣∣∣∣t
0

=
1
2

at2 (11)
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First Week Kinematics of Motion

Dimensional Analysis

Most of the time, the final formula can be estimated unto overall
coefficients using dimensions only. Denote the dimension of any
quantity O by [O]

Dimension of x(t) is [x(t)] = m
The dimensionful parameters in the problem are the acceleration
a and the time t .
Assume x(t) = Aak t l where A, k and l are numbers.

[Aamt l ] = [A][a]k [t ]l = 1
(m

s2

)k
sl = mksl−2k (12)

x = Aak t l =⇒ k = 1 and l − 2k = 0 =⇒ x(t) = Aat2

Explicit calculation shows A = 1
2 .
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First Week Kinematics of Motion

In principle these steps can be done for the change in
acceleration, change in the change in the acceleration, etc.
Newton’s Laws tell us that this is not necessary
The acceleration of an object is determined by external effects.
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First Week Kinematics of Motion

Compare

v(t) =
dx
dt
⇐⇒ x(t) = x(0) +

∫ t

0
v(t ′)dt ′ (13)

a(t) =
dv
dt
⇐⇒ v(t) = v(0) +

∫ t

0
a(t ′)dt ′ (14)

Integration is the inverse of differentiation

Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 38 / 50



First Week Kinematics of Motion

Compare

v(t) =
dx
dt
⇐⇒ x(t) = x(0) +

∫ t

0
v(t ′)dt ′ (13)

a(t) =
dv
dt
⇐⇒ v(t) = v(0) +

∫ t

0
a(t ′)dt ′ (14)

Integration is the inverse of differentiation

Altuğ Özpineci ( METU ) Phys109-MECHANICS PHYS109 38 / 50



First Week Motion in 3D and Vectors

Vectors

For motion that is not confined to a line, more than a number is
necessary to describe the direction.
A vector is a recipe for how to go to the point A from the origin.
A vector is a number and a direction
Origin is arbitrarily chosen
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First Week Motion in 3D and Vectors

y (m)

0 x (m)

~A2

3

~A = (3,2) m (15)
~A = (3 m)x̂ + (2 m)ŷ (16)
~A = (3 m)̂i + (2 m)̂j (17)

~A = (
√

13 m,arctan
2
3

) (18)

~A = (2,3) m (19)

~A = (
√

13 m,arctan
3
2

)
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First Week Motion in 3D and Vectors

Vector Operations-Multiplication by a number

A vector ~A is a number (the length of the vector, |~A|) and a
direction.
The vector λ~A is another vector

The length of λ~A is |λ~A| = |λ||~A|
The direction of λ~A is the same as the direction of ~A if λ > 0, and
opposite to ~A if λ < 0
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First Week Motion in 3D and Vectors

Vector Operations-Addition of Vectors

Geometrical Addition

y

O x

~A

~B

~A

~B ~C = ~A + ~B

~A− ~B

Componentwise Addition
~A = Ax x̂ + Ay ŷ + Az ẑ
~B = Bx x̂ + By ŷ + Bz ẑ
~C = Cx x̂ + Cy ŷ + Cz ẑ
Cx = Ax + Bx , Cy = Ay + By
Cz = Az + Bz

Ci = Ai + Bi , i = x , y or z

Subtraction
~A− ~B = ~A + ((−1)~B)
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First Week Motion in 3D and Vectors

Vector Operations: Scalar Product

~A

~B

α

A‖

B‖

Scalar product gives a number from
two vectors
~A · ~B ≡ |~A||~B| cosα
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First Week Motion in 3D and Vectors

Vector Operations: Scalar Product

~A

~B

α

A‖

B‖

Scalar product gives a number from
two vectors
~A · ~B ≡ |~A||~B| cosα
Scalar product is linear:
~A · (a~B + b~C) = a(~A · ~B) + b(~A · ~C)

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1,
x̂ · ŷ = x̂ · ẑ = ŷ · ẑ = 0
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~A

~B

~C~D ≡ ~B + ~C

B‖ C‖

D‖
~A·~D = AD‖ = A(B‖+C‖) = ~A·~B+~A·~C



First Week Motion in 3D and Vectors

Vector Operations: Scalar Product

~A

~B

α

A‖

B‖

Scalar product gives a number from
two vectors
~A · ~B ≡ |~A||~B| cosα
~A = Ax x̂ + Ay ŷ + Az ẑ,
~B = Bx x̂ + By ŷ + Bz ẑ
~A · ~B = AxBx + AyBy + AzBz

Ax = ~A · x̂ , Ay = ~A · ŷ , and Az = ~A · ẑ
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First Week Motion in 3D and Vectors

Vector Operations: Vector Product

~A

~B

α

A⊥B⊥

Vector product gives a vector from
two vectors
|~A× ~B| = |~A||~B| sinα

Direction of ~A× ~B is given by the right
hand rule. (~A× ~B = −~B × ~A)
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First Week Motion in 3D and Vectors

Vector Operations: Vector Product

~A

~B

α

A⊥B⊥

Vector product gives a vector from
two vectors
|~A× ~B| = |~A||~B| sinα

Direction of ~A× ~B is given by the right
hand rule. (~A× ~B = −~B × ~A)
Vector product is linear:
~A · (a~B + b~C) = a(~A · ~B) + b(~A · ~C)

x̂ × x̂ = ŷ × ŷ = ẑ × ẑ = 0,
x̂ × ŷ = ẑ, x̂ × ẑ = −ŷ , ŷ × ẑ = x̂
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First Week Motion in 3D and Vectors

Vector Operations- Vector Division

Division by a vector DOES NOT exist!
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