Review of Integration

• $\int_{t_1}^{t_2} f(t) dt$ is just a symbol

- Meaning of the symbol: What does it stand for?
- Value of the symbol: What does that symbol equal to?

Altuğ Özpineci (METU)

Phys109-MECHANICS

Review of Integration

- $\int_{t_1}^{t_2} f(t) dt$ is just a symbol
 - Meaning of the symbol: What does it stand for?
 - Value of the symbol: What does that symbol equal to?

Altuğ Özpineci (METU)

Phys109-MECHANICS

- The area is $A = \pi R^2 \simeq 3.21$
- The number of squares lying entirely inside the circle: A_< = 1
- The number of squares that have a part inside the circle: A_> = 9

A b

Area of each square:
 a₀ = 1

•
$$a_0A_< < A < a_0A_>$$

 $\implies 1 < A < 9$

Altuğ Özpineci (METU)

Phys109-MECHANICS

PHYS109 48 / 56

- The area is $A = \pi R^2 \simeq 3.21$
- The number of squares lying entirely inside the circle: A_< = 4
- The number of squares that have a part inside the circle: A_> = 16
- Area of each square: $a_0 = 1/4$

•
$$a_0A_< < A < a_0A_>$$

 $\implies 1 < A < 4$

PHYS109 48 / 56

- The area is $A = \pi R^2 \simeq 3.21$
- The number of squares lying entirely inside the circle: A_< = 32
- The number of squares that have a part inside the circle: A_> = 60
- Area of each square: $a_0 = 1/16$
- $a_0 A_{<} < A < a_0 A_{>}$ $\implies 2 < A < 3.75$

Altuğ Özpineci (METU)

Phys109-MECHANICS

PHYS109 48 / 56

• Always
$$a_0A_< < A < a_0A_>$$

- As the grid size get smaller a₀A_< increases as a₀A_> decreases, and A is always in between
- Eventually $a_0A_{<} \simeq a_0A_{>} \simeq A$: Mathematical expression:

$$\lim_{a_0 \to 0} a_0 A_{<} = \lim_{a_0 \to 0} a_0 A_{>} = A$$
(23)

PHYS109 49/56

Bölümü

- In the limit $a_0 \rightarrow 0$, each sum contains infinitely many terms
- The contribution of each term, i.e. $1 \times a_0$, becomes zero.
- In the limit a₀ → 0, we are summing infinitely many zeroes: the result is finite.
- rather than writing "limit as $a_0 \rightarrow 0$, sum the areas of all the squares that lie completely inside the circle," we write

$$\int_{\text{disc}} 1 \times da$$

(23)

Area of a circle

- Let r be the inner radius of the chosen ring
- $r + \delta r$ be the area of the outer radius of the chosen ring
- The ring can be straightened out and it will fit inside a rectangle whose width is δr are height 2π(r + δr)
- The ring will contain a rectangle whose width is δr and height 2πr.
- $2\pi r \delta r < \delta A < 2\pi (r + \delta r) \delta r$ where δA is the area of the ring

PHYS109 50 / 56

Fizik

Bölümü

Department

Physics

Altuă Özpineci (METU)

Area of a circle

- 2πrδr < δA < 2π(r + δr)δr where δA is the area of the ring
- Total area of the disk is the sum of all such rings from r = 0 upto r = R:

$$\sum_{r} 2\pi r \delta r < A = \sum_{r=0}^{R} \delta A < \sum_{d} 2\pi (r + \delta r) \delta r$$
(24)

• In the limit $\delta r \rightarrow 0$

(25)

$$A = \int_0^R dr 2\pi r = \pi R^2$$

(26)

PHYS109 50 / 56

POP QUIZ

POP QUIZ

$$\vec{A} = \hat{x} + \hat{y} + \hat{z}$$
(27)
$$\vec{B} = \hat{x} + \hat{y} - 2\hat{z}$$
(28)

- Show that \vec{A} and \vec{B} are perpendicular.
- 2 Calculate $\vec{A} + \vec{B}$, $\vec{A} \vec{B}$, $\vec{A} \cdot \vec{B}$
- **3** Calculate $|\vec{A}|, |\vec{B}|$

Displacement Vector

The displacement vector is $\Delta \vec{x} = \vec{x}_{12} = \vec{x}_2 - \vec{x}_1$

Altuğ Özpineci (METU)

Phys109-MECHANICS

PHYS109 52 / 56

Fizik Bölümü

Department

イロト イヨト イヨト イヨト

Physics

The discussions on motion in 1D can be generalized to 3D by just representing positions, velocities and acceleration with 3D vectors:

- \vec{x}_i and \vec{x}_f are initial and final positions of the particle.
- Displacement vector is $\Delta \vec{x} = \vec{x}_f \vec{x}_i$
- Average velocity is $\vec{\vec{v}} = \frac{\Delta \vec{x}}{\Delta t}$. ($\vec{\vec{v}}$ is a vector times a number, hence it is also a vector)
- Componentwise $\bar{v}_x = \frac{\Delta x}{\Delta t}$, $\bar{v}_y = \frac{\Delta y}{\Delta t}$, $\bar{v}_z = \frac{\Delta z}{\Delta t}$.
- Instantaneous velocity $\vec{v}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{x}}{\Delta t} = \frac{d\vec{x}}{dt}$
- Componentwise $v_x(t) = \frac{dx}{dt}$, $v_y(t) = \frac{dy}{dt}$, $v_z(t) = \frac{dz}{dt}$

Department of Physics

PHYS109

53 / 56

< 日 > < 同 > < 回 > < 回 > < □ > <

The discussions on motion in 1D can be generalized to 3D by just representing positions, velocities and acceleration with 3D vectors:

- \vec{v}_i and \vec{v}_f are initial and final velocities of the particle.
- Average acceleration is $\overline{\vec{a}} = \frac{\Delta \vec{v}}{\Delta t}$. ($\overline{\vec{a}}$ is a vector times a number, hence it is also a vector)
- Componentwise $\bar{a}_x = \frac{\Delta v_x}{\Delta t}$, $\bar{a}_y = \frac{\Delta v_y}{\Delta t}$, $\bar{a}_z = \frac{\Delta v_z}{\Delta t}$.
- Instantaneous acceleration $\vec{a}(t) = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$
- Componentwise $a_i(t) = \frac{dv_i}{dt}$

The discussions on motion in 1D can be generalized to 3D by just representing positions, velocities and acceleration with 3D vectors:

•
$$\vec{v}(t) = \frac{d\vec{x}}{dt} \iff \vec{x}(t) = \vec{x}(t_i) + \int_{t_i}^t \vec{v}(t') dt'$$

•
$$\vec{a}(t) = rac{d\vec{v}}{dt} \iff \vec{v}(t) = \vec{v}(t_i) + \int_{t_i}^t \vec{a}(t') dt'$$

Motion In Earth's Gravity

- In the absence of friction, all objects have the same acceleration under the gravitational attraction of Earth.
- Close to the surface of Earth, this acceleration is uniform, and is denoted by $g \simeq 9.8 \ m/s^2$ and points toward the center of Earth.
- Choose a coordinate axis: one possible choice is z pointing downwards and x and y axis horizontal. Choose z = 0 plan to lie on the surface of earth.

Motion In Earth's Gravity

• In the absence of friction, all objects have the same acceleration under the gravitational attraction of Earth.

Altuğ Özpineci (METU)

PHYS109 54 / 56

Motion In Earth's Gravity

• In the absence of friction, all objects have the same acceleration under the gravitational attraction of Earth.

