Review of Integration

- $\int_{t_{1}}^{t_{2}} f(t) d t$ is just a symbol
- Meaning of the symbol: What does it stand for?
- Value of the symbol: What does that symbol equal to?

Review of Integration

- $\int_{t_{1}}^{t_{2}} f(t) d t$ is just a symbol
- Meaning of the symbol: What does it stand for?
- Value of the symbol: What does that symbol equal to?

- The area is $A=\pi R^{2} \simeq 3.21$

- The area is $A=\pi R^{2} \simeq 3.21$
- The number of squares lying entirely inside the circle:
$A_{<}=1$
- The number of squares that have a part inside the circle:
$A_{>}=9$
- Area of each square:
$a_{0}=1$
- $a_{0} A_{<}<A<a_{0} A_{>}$
$\Longrightarrow 1<A<9$

- The area is $A=\pi R^{2} \simeq 3.21$
- The number of squares lying entirely inside the circle:
$A_{<}=4$
- The number of squares that have a part inside the circle:
$A_{>}=16$
- Area of each square:
$a_{0}=1 / 4$
- $a_{0} A_{<}<A<a_{0} A_{>}$
$\Longrightarrow 1<A<4$

- The area is $A=\pi R^{2} \simeq 3.21$
- The number of squares lying entirely inside the circle:
$A_{<}=32$
- The number of squares that have a part inside the circle:
$A_{>}=60$
- Area of each square:
$a_{0}=1 / 16$
- $a_{0} A_{<}<A<a_{0} A_{>}$
$\Longrightarrow 2<A<3.75$

- $a_{0} A_{<}=\sum_{\text {squares completely }} 1 \times a_{0}$ in circle
- $a_{0} A_{>}=\sum$ squares containing at least $1 \times a_{0}$ a fraction inside the circle
- Always $a_{0} A_{<}<A<a_{0} A_{>}$
- As the grid size get smaller $a_{0} A_{<}$increases as $a_{0} A_{>}$decreases, and A is always in between
- Eventually $a_{0} A_{<} \simeq a_{0} A_{>} \simeq A$: Mathematical expression:

$$
\begin{equation*}
\lim _{a_{0} \rightarrow 0} a_{0} A_{<}=\lim _{a_{0} \rightarrow 0} a_{0} A_{>}=A \tag{23}
\end{equation*}
$$

- $a_{0} A_{<}=\sum_{\text {squares completely }} 1 \times a_{0}$ in circle
- $a_{0} A_{>}=\sum$ squares containing at least $1 \times a_{0}$ a fraction inside the circle
- In the limit $a_{0} \rightarrow 0$, each sum contains infinitely many terms
- The contribution of each term, i.e. $1 \times a_{0}$, becomes zero.
- In the limit $a_{0} \rightarrow 0$, we are summing infinitely many zeroes: the result is finite.
- rather than writing "limit as $a_{0} \rightarrow 0$, sum the areas of all the squares that lie completely inside the circle," we write

$$
\begin{equation*}
\int_{\operatorname{disc}} 1 \times d a \tag{23}
\end{equation*}
$$

Area of a circle

- Let r be the inner radius of the chosen ring
- $r+\delta r$ be the area of the outer radius of the chosen ring
- The ring can be straightened out and it will fit inside a rectangle whose width is δr are height $2 \pi(r+\delta r)$
- The ring will contain a rectangle whose width is δr and height $2 \pi r$.
- $2 \pi r \delta r<\delta A<2 \pi(r+\delta r) \delta r$ where δA is the area of the ring

Area of a circle

- $2 \pi r \delta r<\delta A<2 \pi(r+\delta r) \delta r$ where δA is the area of the ring
- Total area of the disk is the sum of all such rings from $r=0$ upto $r=R$:

$$
\begin{equation*}
\sum_{r} 2 \pi r \delta r<A=\sum_{r=0}^{R} \delta A<\sum_{d} 2 \pi(r+\delta r) \delta r \tag{24}
\end{equation*}
$$

- In the limit $\delta r \rightarrow 0$

$$
\begin{equation*}
A=\int_{0}^{R} d r 2 \pi r=\pi R^{2} \tag{25}
\end{equation*}
$$

POP QUIZ

$$
\begin{gather*}
\vec{A}=\hat{x}+\hat{y}+\hat{z} \tag{27}\\
\vec{B}=\hat{x}+\hat{y}-2 \hat{z}
\end{gather*}
$$

(28)
(1) Show that \vec{A} and \vec{B} are perpendicular.
(2) Calculate $\vec{A}+\vec{B}, \vec{A}-\vec{B}, \vec{A} \cdot \vec{B}$
(3) Calculate $|\vec{A}|,|\vec{B}|$

Displacement Vector

The displacement vector is $\Delta \vec{x}=\vec{x}_{12}=\vec{x}_{2}-\vec{x}_{1}$

Motion in 3D

The discussions on motion in 1D can be generalized to 3D by just representing positions, velocities and acceleration with 3D vectors:

- \vec{x}_{i} and \vec{x}_{f} are initial and final positions of the particle.
- Displacement vector is $\Delta \vec{x}=\vec{x}_{f}-\vec{x}_{i}$
- Average velocity is $\overline{\vec{v}}=\frac{\Delta \vec{x}}{\Delta t}$. ($\overline{\vec{V}}$ is a vector times a number, hence it is also a vector)
- Componentwise $\bar{v}_{x}=\frac{\Delta x}{\Delta t}, \bar{v}_{y}=\frac{\Delta y}{\Delta t}, \bar{v}_{z}=\frac{\Delta z}{\Delta t}$.
- Instantaneous velocity $\vec{v}(t)=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{x}}{\Delta t}=\frac{d \vec{x}}{d t}$
- Componentwise $v_{x}(t)=\frac{d x}{d t}, v_{y}(t)=\frac{d y}{d t}, v_{z}(t)=\frac{d z}{d t}$

Motion in 3D

The discussions on motion in 1D can be generalized to 3D by just representing positions, velocities and acceleration with 3D vectors:

- \vec{v}_{i} and \vec{v}_{f} are initial and final velocities of the particle.
- Average acceleration is $\overline{\vec{a}}=\frac{\Delta \vec{v}}{\Delta t}$. ($\overline{\vec{a}}$ is a vector times a number, hence it is also a vector)
- Componentwise $\bar{a}_{x}=\frac{\Delta v_{x}}{\Delta t}, \bar{a}_{y}=\frac{\Delta v_{y}}{\Delta t}, \bar{a}_{z}=\frac{\Delta v_{z}}{\Delta t}$.
- Instantaneous acceleration $\vec{a}(t)=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{v}}{\Delta t}=\frac{d \vec{v}}{d t}$
- Componentwise $a_{i}(t)=\frac{d v_{i}}{d t}$

Motion in 3D

The discussions on motion in 1D can be generalized to 3D by just representing positions, velocities and acceleration with 3D vectors:

- $\vec{v}(t)=\frac{d \vec{x}}{d t} \Longleftrightarrow \vec{x}(t)=\vec{x}\left(t_{i}\right)+\int_{t_{i}}^{t} \vec{v}\left(t^{\prime}\right) d t^{\prime}$
- $\vec{a}(t)=\frac{d \vec{v}}{d t} \Longleftrightarrow \vec{v}(t)=\vec{v}\left(t_{i}\right)+\int_{t_{i}}^{t} \vec{a}\left(t^{\prime}\right) d t^{\prime}$

Motion In Earth's Gravity

- In the absence of friction, all objects have the same acceleration under the gravitational attraction of Earth.
- Close to the surface of Earth, this acceleration is uniform, and is denoted by $g \simeq 9.8 \mathrm{~m} / \mathrm{s}^{2}$ and points toward the center of Earth.
- Choose a coordinate axis: one possible choice is z pointing downwards and x and y axis horizontal. Choose $z=0$ plan to lie on the surface of earth.

Motion In Earth's Gravity

- In the absence of friction, all objects have the same acceleration under the gravitational attraction of Earth.

- $\vec{a}=g \hat{z}$.
- $\vec{v}(t)=\vec{v}\left(t_{i}\right)+\int_{t_{i}}^{t} \vec{a}\left(t^{\prime}\right) d t^{\prime}=\vec{v}_{i}+g \hat{z}\left(t-t_{i}\right)$

Motion In Earth's Gravity

- In the absence of friction, all objects have the same acceleration under the gravitational attraction of Earth.

- $\vec{v}(t)=\vec{v}_{i}+g \hat{z}\left(t-t_{i}\right)$

