

Experiment 4: Parallel Adders, Subtractors, and Complementors.
Revised by Yunus Can Gültekin, Mustafa Kangül, and Barış Bayram.
METU © 2015 All Rights Reserved.
(e-mail: yunuscangultekin@gmail.com) Page 1 of 24

EXPERIMENT 4. Parallel Adders, Subtractors, and Complementors

I. Introduction

I.a. Objectives

In this experiment, parallel adders, subtractors and complementors will be
designed and investigated. In the first and second parts of the experiment you will
implement your circuits using ICs and connecting them on the breadboard. In the
rest of the experiment, you will use Quartus II 14.1 software and FPGA to
implement the circuits. In this experiment, you need to download your designs to
the FPGA and check the results by physical means, i.e., using LEDs and
oscilloscope. Another objective of this experiment is to expose you the
hierarchical design method for logic circuits.

I.b. Background

Digital computers perform a number of arithmetic operations for information
processing. These tasks are performed using various arithmetic logic circuits. The
most commonly used basic arithmetic circuits are adders, subtractors and
complementors. A short description of these circuits is given below.

Adders:
Adders are divided into two groups: half adders and full adders. Full adders are
used to add three bits where one of them is carry from the preceding adder. They
have two outputs: sum and carry to the next stage. In half adders, only two inputs
are considered as operands; hence carry inputs are ignored. The truth table of a
full adder is given in Table 4.1. Two of the input variables, denoted by Xk and Yk,
represent two significant bits to be added. The third input, Ck-1 represents the
carry from the previous lower significant position.

EE 314 Digital Electronics Laboratory Page 2 of 24

Figure 4.1 Block diagram of a full adder

Table 4.1 Truth table of a full adder (Xk+Yk)

Xk Yk Ck-1 Sk Ck

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Subtractors:
Subtractors are similar to adders. There are full subtractors with three inputs one
of which is the ‘borrow’ from the preceding subtractor. The two outputs are
difference and borrow to the succeeding unit. Half subtractors do not have a
borrow input. Figure 4.2 shows the block diagram of a full subtractor and Table
4.2 gives its truth table.

Figure 4.2 Block diagram of a full subtractor

FULL
ADDER

Ck-1

Sk
 Ck

Xk

Yk

FULL
SUBTRACTOR

Dk
 Bk

Xk

Yk

Bk-1

EE 314 Digital Electronics Laboratory Page 3 of 24

Table 4.2 Truth table of a full subtractor (Xk-Yk)

Xk Yk Bk-1 Bk Dk

0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1

Complementors:
Complementor units are of two types: 1’s complement units and 2’s complement
units. The truth tables for 2-bit 1’s complement and 2’s complement units are
given in Table 4.3.

Table 4.3 Truth table of complementors

Input Number
1’s Complement

Unit
2’s Complement

Unit

00 11 00
01 10 11
10 01 10
11 00 01

Note: 2’s complement of a number is its 1’s complement plus binary one.

The arithmetic units of computers usually employ the principles of either 2’s
complement arithmetic or 1’s complement arithmetic. Such units accept two
operands (positive or negative) and perform addition. If subtraction is desired
subtrahend must first be complemented, then added. 2’s complement arithmetic
is the most widely used register arithmetic. Some examples are given below:

i. Sign-magnitude arithmetic:

 +7

+ +5
 +12

 +00111

+ +00101
 +01100

 +7

- +5

 +2

 +00111

- +00101

 +00010

EE 314 Digital Electronics Laboratory Page 4 of 24

ii. 1’s complement arithmetic:

iii. 2’s complement arithmetic:

In signed magnitude arithmetic, the most significant bit of an n-bit word is the
sign bit. The magnitude can be determined from the remaining n-1 bits. If the
result of a 2’s complement arithmetic operation exceeds the range of the available
bit length (overflow for a large positive number or for a small negative number),
then a wrong (invalid) result will be obtained. The presence of an erroneous
result can be detected by the help of a combinational circuit.

 +7

+ -5
 +2

 0111

+ 1010 (1’s complement of 0101)
1 0001

+ 1

 0010

 +7

+ -5

 +2

 0111

+ 1011 (2’s complement of 0101)

1 0010 (Ignore the carry bit.)

EE 314 Digital Electronics Laboratory Page 5 of 24

II. Preliminary Work

1. Read sections 1.5 and 4.4 from the textbook “Digital Design” by M. Mano (3rd

Ed., 2002, Prentice Hall).

2. Design a half adder and a half subtractor using minimum number of gates using

two-input NAND (7400) and two-input XOR (7486). State the truth tables of

both of your designs. Draw and explain your designs in detail.

3. Design a full adder and a full subtractor using minimum number of two-input

NAND (7400) and two-input XOR (7486) gates. Show how you can use half

adders and half subtractors to build a full adder and full subtractor. Show and

explain your designs in detail.

4. Design a 4-bit binary adder by using full adders. You don’t have to draw each

full adder in gate level. Instead, you can put full adder blocks with appropriate

input and output connections. At the end, your design should include 9 inputs

representing two 4-bit numbers and a carry in, and 5 outputs representing one

4-bit number (which is the sum) and a carry out.

5. Design a 4-bit 2’s complement unit with a control signal E such that

When E=0 output is the 2’s complement of the input;
When E=1 output is the same as the input.

You can use two-input NAND (7400), 4-bit binary adder (7483) and two-input
XOR (7486) gates.

6. Design an arithmetic unit that accepts 4-bit wide parallel numbers (X, Y) and

an enable signal (E). Assume that input numbers are represented in 2’s

complement arithmetic. Enable signal E has a function such that

When E=1 unit performs addition (X+Y);
When E=0 unit performs subtraction (X-Y).

You can use two-input NAND (7400), 4-bit binary adder (7483) and two-input
XOR (7486) gates.

EE 314 Digital Electronics Laboratory Page 6 of 24

7. Consider the circuit you designed in Part 6. Prepare a table showing the state

of the outputs when input numbers and control signal are given as shown in

Table 4.4.

Table 4.4 Input signals that should be applied to the circuit
designed in part 6

E=1 X=0110 Y=0011 E=1 X=1010 Y=0111
E=1 X=0111 Y=0001 E=1 X=-5 Y=8
E=0 X=0110 Y=0001 E=0 X=1001 Y=0110
E=0 X=0011 Y=0100 E=0 X=-1 Y=-14

8. In this experiment, you are expected to learn the fundamentals of hierarchical

logic design and use bus structures as inputs and outputs. This question’s

motivation is to give you an insight about the experimental work.

Consider the 4-bit Fibonacci Number Checker that you have designed in the

Preliminary Work of Experiment 3.

 Implement it on Quartus II software.

 Using the experimental work part of the Experiment 4 (III.b.2 Creating

the symbol) create a symbol of your design (namely, Fibonacci

Number Checker block, FNC block).

 Using that symbol, design and implement a 4-bit Not-A-Fibonacci

Number Checker (which gives 1 as the output when the input is not a

Fibonacci number and vice versa).

Note: Your design can be composed of a NOT gate and an FNC block.

 Create a 4-bit bus structure with the help of the experimental work of

this document (III.c.2 Creating a Bus). This bus will be used as the input

of your Not-An-FNC circuit.

 Simulate your design with different inputs. The details of including bus

structured inputs to the simulation window are given in the same

experimental procedure.

 Add your results to your preliminary work. Schematic designs of both

FNC and Not-An-FNC, and the simulation results should be attached.

EE 314 Digital Electronics Laboratory Page 7 of 24

III. Experimental Work

III.a. Testing Your Designs on the Breadboard

1. Construct and test the half adder and half subtractor that you designed in
Part 2 of the preliminary work using ICs connected onto a breadboard.

2. Construct and test the full adder and full subtractor that you designed in
Part 3 of the preliminary work using ICs connected onto a breadboard.

III.b. Designing 4-Bit Binary Adder Using Hierarchical Design Method

3. For the rest of the experiment, you will use Quartus II software and Altera

FPGAs. As you remember, you were required to make the designs of Part 4
and Part 5 of the preliminary work using 7483 IC, namely the 4-bit binary
adder. Now, you will design a 4-bit binary adder and form a component out
of it using the hierarchical design method. Then, you will add it to the
symbol directories of your higher level designs that you will perform later
in the experiment, and use it. Note that only XOR and NAND gates will be
used in the design of your 4-bit binary adder.

In this part –until you learn how to design hierarchically-, you will present
your understanding of proper FPGA and Quartus usage with minimally
guided study.

III.b.1 Implementing the full-adder

4. Create a new schematic file and save it as fulladder in the folder fulladder
in the folder exp4 on the desktop. Don’t forget to click “add file to current
project” option.

Note: We will enter the hierarchical design as multiple projects. We’ll start
with the lowest-level block and then work our way up to the top-level
block. The lowest-level block in this work is the full adder. Each different
block design will be represented as a new project. Hierarchical designs may
also be entered as a single project but lower level block testing is more
difficult.

EE 314 Digital Electronics Laboratory Page 8 of 24

5. Based on the logic circuit design in your Preliminary Work Part 3, create
the full adder by adding appropriate components, input/output pins and
wiring.

6. Save the schematic with the name fulladder and compile the design.

III.b.2 Creating the symbol

7. After determining that the current project functions correctly in the
simulation, you will need to create a symbol for this block to be able to use
it in a higher-level of the design hierarchy.

8. Open File > Create/Update > Create Symbol Files for Current File as it’s

shown on Figure 4.3.

Figure 4.3 Symbol creation window

EE 314 Digital Electronics Laboratory Page 9 of 24

9. This symbol should have the same file name as the design file (fulladder)
but will have a .bsf file extension as it’s shown on Figure 4.4. It will be saved
in the same project folder. Click Save. Click OK.

Figure 4.4 Saving newly created symbol

III.b.3 Starting a New Design Project for the Higher-Level Block

Note: This hierarchical design is being entered as multiple projects. We
will now work on a higher-level project. The higher-level block in this work
is 4-bit adder. Each different block design will be represented as a new
project. Lower-level design blocks will be contained in this project.

10. Create a new directory in the folder exp4 with the name fourbitadder.
Then create a new schematic file and save it as fourbitadder in the folder
fourbitadder in the folder exp4 on the desktop. Don’t forget to click “add
file to current project” option.

Note: A new directory should be created for each separate design project.
This will be a different directory name then was used for the lower-level
project that we just completed.

EE 314 Digital Electronics Laboratory Page 10 of 24

Note: The project name must be different than the lower-level project. We
cannot use duplicate design file names in a project and the lower-level
project will be contained in this new project.

11. When the Add Files dialog box is opened, click the Browse button to
locate the working directory for the lower-level project as it’s shown on
Figure 4.5. We will now identify the files to be included in this top-level
project.

Figure 4.5 Adding symbol file to the new project

12. Use the Select File dialog box to locate the lower-level project. Remember

that it will be in a different folder. Navigate to the lower-level project
directory (...desktop/exp4/fulladder which probably is already
selected). Select the project name (fulladder) and click Open. As the file
name for the design file of the lower-level project appears in the box, click
Add to move this file name to the list of selected files.

13. Click Next, and complete the usual procedure.

EE 314 Digital Electronics Laboratory Page 11 of 24

III.b.4 Implementing the 4-bit binary adder

14. Based on the logic circuit design in your Preliminary Work Part 4, create
the 4-bit binary adder by adding appropriate components, input/output
pins and wiring.

Note: To use the lowest-level design (fulladder); click the Symbol Tool
button (gate symbol) on the top of the Block Diagram/Schematic File editor
window. Click Browse button (...) and locate the project directory
(...desktop/exp4/fulladder) of the lowest-level fulladder file as it’s
shown on Figure 4.6. fulladder file selected, click Open.

Figure 4.6 Using previously created symbol

Note: By the way, you can view the schematic for the lowest-level fulladder
block by double clicking on any one of the block symbols. The schematic
will open in another Block Diagram/Schematic File window.

Full-adder block should be seen like in the Figure 4.7.

EE 314 Digital Electronics Laboratory Page 12 of 24

Figure 4.7 Full-adder symbol in your library

15. Save the schematic with the name fourbitadder and compile the design.

III.b.5 Creating the symbol

16. By the same method that you use for the full-adder symbol, create symbol
for 4-bit binary adder. This symbol should have the same name as the
design file (fourbitadder) but will have a .bsf file extension. It will be saved
in the same project folder. Click Save. Click OK.

III.c. Designing the Complementor

Note: This hierarchical design is being entered as multiple projects. We will
now work on the top-level projects. The first top-level block in this work is
the Complementor. Each different block design will be represented as a
new project. Lower-level design blocks will be contained in these projects.

17. Create a new directory in the folder exp4 with the name fourbitadder.
Then create a new schematic file and save it as complementor in the folder
complementor in the folder exp4 on the desktop. Don’t forget to click “add
file to current project” option.

Note: A new directory should be created for each separate design project.
This will be a different directory name then was used for the lower-level
project that we just completed.

EE 314 Digital Electronics Laboratory Page 13 of 24

Note: The project name must be different than the lower-level project. We
cannot use duplicate design file names in a project and the lower-level
project will be contained in this new project.

18. When the Add Files dialog box is opened, click the Browse button to locate
the working directory for the lower-level project. We will now identify the
files to be included in this top-level project.

19. Use the Select File dialog box to locate the lower-level project. Remember

that it will be in a different folder. Navigate to the lower-level project
directory (...desktop/exp4/fourbitadder which probably is already
selected). Select the project name (fourbitadder) and click Open. As the
file name for the design file of the lower-level project appears in the box,
click Add to move this file name to the list of selected files. Repeat this
procedure for fulladder project, and add it too. At the end, Add Files dialog
box should be seen like in Figure 4.8.

Figure 4.8 Add Files dialog box when you add low-level projects

20. Click Next, and complete the usual procedure.

EE 314 Digital Electronics Laboratory Page 14 of 24

III.c.1 Implementing the Complementor

21. Based on the logic circuit design in your Preliminary Work Part-5, create
the 4-bit 2’s complementor by adding appropriate components,
input/output pins and wiring. Assume that you have a 4-bit binary number
X3X2X1X0 . This unit must result in Z3Z2Z1Z0 (which is the 2’s complement of
X3X2X1X0), when the control bit E is 0, and should give the input as output
when E is 1.

Note: To use the low-level design (fourbitadder); click the Symbol Tool
button (gate symbol) on the top of the Block Diagram/Schematic File editor
window. Click Browse button (...) and locate the project directory
(...desktop/exp4/fourbitadder) of the lower-level fourbitadder file as
it’s shown on Figure 4.9. Fourbitadder file selected, click Open.

Figure 4.9 Using previously created symbol

Full-adder block should be seen like in the Figure 4.10.

EE 314 Digital Electronics Laboratory Page 15 of 24

Figure 4.10 4-Bit Binary Adder symbol in our library

22. By using fourbitadder symbol, draw the schematic of your complementor

design. You may (or will) need a constant “0” (zero, low) or a constant “1”
(one, high) to use as an input etc. You may use a 0 (GND) or a 1 (Vcc) which
can be found in Other category in the primitives tab of the Symbol box.

III.c.2 Creating a Bus

23. You will need to use busses in the circuit schematic to represent

input/output pins. A bus is basically a wire that represents more than one

inputs or outputs. To In Quartus II, a bus is named as, for example, A[3..0],

which means the bus is 4-bit, and composed of the signals A3,A2,A1, and A0

where A3 is the most significant bit.

24. To create a bus, you should put an input pin from the pins library of the

Symbol Wizard box.

25. Name this input as ‘X[3..0]’ as it’s shown on Figure 4.11. You can easily do

this by right-clicking the input object, selecting ‘properties’, and changing

the name.

EE 314 Digital Electronics Laboratory Page 16 of 24

Figure 4.11 Input pin for input bus

26. Add a bus to the input as it’s shown in Figure 4.12. Do this by selecting the

bus symbol (like the net symbol but with a thicker line, ‘Orthogonal Bus

Tool’) and drawing the bus line as in the same figure. Name this bus as

‘X[3..0]’.

Figure 4.12 4-bit bus with its input pin connected

27. Now connect the inputs of your design to the bus, and name the nets

properly as X[1], X[2] etc. as its shown on Figure 4.13.

EE 314 Digital Electronics Laboratory Page 17 of 24

Figure 4.13 4-bit bus with its input pin and connections

28. Apply the same methodology to create output bus.

29. Your bus design should be seen as in Figure 4.14. (Of course there should
be your complementor design in between them with wires etc. connected
accordingly.)

Figure 4.14 A bus implementation which is missing a logic design

30. Save the schematic with the name complementor and compile the design.

EE 314 Digital Electronics Laboratory Page 18 of 24

III.c.3 Functional Simulation of the Complementor

31. Now we’re going to verify the behavior of the top-level circuit design.

Simulation of this project can be a little bit more complicated since there

are a total of 4 inputs applied to the top-level circuit. That means there are

16 possible input combinations! That is probably a little more than we

want (or need) to actually test the design with. So, what we should do is

develop a simulation strategy or plan that will adequately test the circuit

design without taking the time to exhaustively test all possible

combinations. Table 4.5 lists some input conditions that might be chosen

to test our logic circuit. We will draw the corresponding test vectors in a

Vector Waveform File (.vwf).

Table 4.5 Selected input test vectors for complementor design

X[3] X[2] X[1] X[0] X E

0 0 0 0 0 0
1 0 1 1 B 1
0 1 1 0 6 1
0 0 1 0 2 0
1 1 1 0 E 1
1 0 0 1 9 0
1 1 1 1 F 0
1 0 0 0 8 0
0 0 1 1 3 1
1 1 0 0 C 0

32. Open the Waveform Editor.

33. Save the file under the name complementor.vwf. Set the desired

simulation to run from 0 to 300 ns by selecting Edit > End Time and

entering 300 ns. By selecting View > Fit in Window, display the entire

simulation range of 0 to 300 ns in the window. Divide waveform into 10

pieces by selecting Edit > Grid Size and entering 30 ns.

EE 314 Digital Electronics Laboratory Page 19 of 24

34. Next, we want to include the input and output nodes of the circuit to be

simulated. Click Edit > Insert > Insert Node or Bus to open the dialog

box. Click Node Finder. Select Pins:all and click List. To add your input

and output nodes easily, select the Input Group type variable instead of

selecting every bit of it separately. Do this for the output bus as it’s shown

on Figure 4.15. Click OK twice.

Figure 4.15 Adding busses to the functional simulation setup

35. If you extend your 4-bit input groups by double clicking on their names,

the waveform will be seen like in Figure 4.16. Otherwise they will be seen

like they have a single value (which is actually the case.)

EE 314 Digital Electronics Laboratory Page 20 of 24

Figure 4.16 One possible way to visualize the inputs/outputs

36. Arrange the waveform by selecting every 30 ns period, right clicking,

selecting Value>Arbitrary Value>Radix: Hexadecimal and entering the

values according to the Table 4.5. Your waveform should be seen like the

Figure 4.17.

Figure 4.17 Functional simulation window prior to simulation

37. Save the waveform. Run Functional Simulation.

EE 314 Digital Electronics Laboratory Page 21 of 24

38. You will see the simulation results of your design according to the inputs
that you give. Check the output for different input combinations. Being sure
the design is working properly, close Waveform Editor Window. Your
functional simulation results will hopefully be seen like in Figure 4.18.

Figure 4.18 One way to see simulation results

To change the representations of the input and output, you can right click
on the values under the name tab situated on he left and select
Radix>Binary, Radix>Hexadecimal or anyone of them as you like.
Another representation can be seen in Figure 4.19.

Figure 4.19 Another way to see simulation results

EE 314 Digital Electronics Laboratory Page 22 of 24

III.c.4 Testing the Complementor Design on FPGA

39. Assign input and output pins to your complementor design by using your
experience. For example, you can use SW9, SW8, SW7, and SW6 for data
input vector X, SW0 for control input E, and LED0, LED1, LED2, and LED3
for output vector. Save your assignment.

40. Recompile your design, and use output files to program your FPGA. Test

the input combinations given in Table 4.5 and more on FPGA.

III.d. Designing the Adder/Subtractor

41. Based on your design in Preliminary Work Part 6, implement your

adder/subtractor design on a new project. Don’t forget to create a new
project with a unique name in a separate folder, and add files of your low-
level projects (full-adder, and 4-bit binary adder) while creating your
project.

Note: While implementing your adder/subtractor design, you should use
busses to represent input and output vectors. After all, your design should
include 3 input pins (2 of them are for input busses, and the other is for
control input E), and 1 output pin for the output bus. For the sake of
convenience, use X, Y, and E as input names, and Z for output name.

Table 4.6 Selected input test vectors for adder/subtractor design

X[3] X[2] X[1] X[0] X Y[3] Y[2] Y[1] Y[0] Y E
0 1 1 0 6 0 0 1 1 3 1
0 1 1 1 7 0 0 0 1 1 1
1 1 0 1 D 0 1 0 1 5 0
0 0 1 1 3 0 1 0 0 4 0
1 1 1 0 E 1 1 1 1 F 1
1 0 0 1 9 1 0 0 1 9 1
1 1 1 1 F 1 1 0 0 C 0
1 0 0 0 8 0 0 0 0 0 0

42. Simulate your design functionally by using input combinations given in
Table 4.6. Don’t forget to save and compile your design beforehand.

43. Assign pins to your inputs and outputs, and test your design on FPGA.
Don’t forget to save and recompile your design after assigning pins.

EE 314 Digital Electronics Laboratory Page 23 of 24

IV. References

[1] Manual for Experiment 4: Parallel Adders, Subtractors, and Complementors.
 EE-314 Digital Electronics Laboratory, METU. (Used until 2015)

[2] G.L. Moss, “Quartus Tutorial 3–Hierarchical Designs, A step-by-step tutorial

using Quartus II v9.x.” May 2010.

V. FPGA Pin Assignment Codes

Figure 4.20 DE1 S0C pin assignment descriptions

EE 314 Digital Electronics Laboratory Page 24 of 24

VI. Required IC List

7400 IC Four NAND2, i.e., four two input NAND gates
7483 IC 4-bit binary adder
7486 IC Four XOR2, i.e., four two-input XOR gates

Figure 4.21 Pin Diagram for 7400 IC

Figure 4.22 Pin Diagram for 7486 IC

Figure 4.23 Pin Diagram for 7483 IC

