MATH 320 SET THEORY

Week 2

2. FrRoM PAIRS TO PRODUCTS

2.1. Relations. One of the most fundamental concepts in mathematics is the con-
cept of a relation and we begin this section by introducing the set-theoretic defini-
tion of a relation.

Definition 6. A set R is said to be a (binary) relation if it consists of ordered
pairs, i.e. Vz € R 3x Jy z = (1,y)
Given a relation R, using the union and separation axioms, we can form the sets
dom(R) = {a : 3b (a,b) € R} and ran(R) = {b: Ja (a,b) € R}

These scts arc called the domain of R and the range of I? respectively. Intuitively
speaking, one can think of the relation R as a “rule” that relates certain sets in
dom(R) to certain sets in ran(R). If R is a relation and (a,b) € R, then one says
that “e is in relation R with b” or “a is related to b under the relation R”. It is
common practice to write aRb instead of (a,b) € R.

Definition 7. Let A be a set and R be a relation. The image of the set A under
the relation R 1is the set

{y: 3z € A xRy}
and is denoted by R[A].

Definition 8. Let B be a set and R be a relation. The inverse image of the set B
under the relation R is the set

{z:Jy € B xRy}
and is denoted by R™'[B].
Exercise 6. Let a,b,c be sets. Show that the set

{(a,b), (a,a), (c,a), (b,b)}

is a relation and find its domain and range. Then find the image and the inverse
image of the set {a,c} under this relation.

We will not list many exercises regarding these basic notions and refer the reader
who wish to practice to any elementary textbook on set theory.

Definition 9. Let R be a relation. The inverse relation of R is the set
{(b,a) : (a,b) € R}
and is denoted by R™1.

At this point, one may object that our notation creates an ambiguity since it is
not clear whether the set R™![A] denotes the image of A under R™1 or the inverse
image of A under R. This objection is resolved by the following exercise which
justifies our usage of the notation R~![A] to denote both sets.

Lemma 2. Let R be a relation and A be a set. Show that the image of A under
the relation R~ is the same as the inverse image of A under R.

Proof. Left to the reader as an exercise. O
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Next comes the definition of the cartesian product of two sets. One can easily
check that if a € A and b € B, then (a,b) € P(P(AU B)). Thus, given two sets A
and B, using the axioms introduced so far, we can form the set of all ordered pairs
whose first components belong to A and whose second components belong to B.

Definition 10. Let A and B be sets. The cartesian product of A and B is the set
{(a,b) e P(P(AUB)):a€ ANb€ B}
and is denoted by A x B.

Definition 11. Let R be a relation and A, B be sets. The relation R is said to be

e a relation from A to B if RC A X B;
e a relation on A if R C A x A.

In particular, every relation R is a relation from dom(R) to ran(R). However,
notice that a relation R being from the set A to the set B does not necessarily
mean that A = dom(R) and B = ran(R).

Definition 12. Let R and S be relations. Then the composition of S and R is the
relation

{(a,b) : 3¢ (a,c) € R N (c,b) € S}
and is denoted by S o R.

The notion of composition of two relations is most frequently used when both
relations are a special type of relations called functions. On the other hand, some
useful properties of the operation o still hold for arbitrary relations.

Exercise 7. Let R and S be relations. Prove that (SoR)"'= R 10851,
Exercise 8. Let R, S and T be relations. Prove that T o (SoR)= (T oS)oR.

Before introducing the notion of a function, we would like to mention two rela-
tions defined on an arbitrary set, which will be useful in later sections.

Definition 13. Let A be a set. The membership relation on A is the relation
{(a,b) e AXx A:a€b}

and s denoted by € 4.

Definition 14. Let A be a set. The identity relation on A is the relation
{(a,b) e Ax A:a =0}

and is denoted by A 4.

The notion of a binary relation can be generalized to that of an n-ary relation,
which is a relation that holds or not holds between n many sets. However, the
most convenient way to define n-ary relations requires the construction of natural
numbers and the n-fold cartesian product of sets. Consequently, we postpone the
definition of an n-ary relation until Section 3.



MATH 320 SET THEORY

2.2. Functions. Recall that one can think of a relation R as a “rule” that relates
certain sets in dom(R) to certain sets in ran(R). If this “rule” happens to uniquely
assign each set dom(R) to a certain set in ran(R), then the corresponding relation
is said to be a function. More precisely,

Definition 15. Let R be a relation. The relation R is said to be a function if

VaVbVe (aRb A aRc — b= c)!

The simplest example of a function is the empty set (). Notice that the definition
of a function vacuously holds for the empty set for it has not clements.

Definition 16. Let R be a relation and A, B be sets. The relation R is said to be
a function from A to B if R is a function, dom(R) = A and ran(R) C B. In this
case, R is said to have domain A and codomain B.

An important point to realize is that, according to this definition, the very same
set can be considered as a function from the same domain to different codomains.
For this reason, whenever it is necessary, we shall always specify the codomain of a
function.

Definition 17. Let R be a function and x € dom(R). The (necessarily) unique
element y € ran(R) for which (x,y) € R is called the value of R at x.

Before we proceed, we introduce some notation regarding functions. From now
on, we shall write R : A — B whenever we need to denote a set R which is a
function from the set A to the set B. The value of R at a will be denoted by R(a).

We would also like to emphasize that functions are relations and hence all notions
introduced for relations so far are applicable to functions as well. We next introduce
the notion of a bijective function, which will be central to our study of infinite sets.

Definition 18. Let f : A — B be a function with domain A and codomain B.
Then f is said to be
e one-to-one (or injective) if for all x,y € A we have f(x) = f(y) = = = y.
e onto (or surjective) if ran(f) = f[A] = B.
e one-to-one correspondence (or bijection) if it is both one-to-one and onto.

Observe that surjectivity and bijectivity of a function both depend on the speci-
fied codomain, unlike injectivity. Consequently, the very same set can be surjective
for some codomain and not surjective for some other codomain. The following
exercise illustrates this fact.

Exercise 9. Prove that the empty set () is a bijection as a function from 0 to ) and
not a surjection as a function from O to {0}.

The notion of injectivity can be generalized to arbitrary relations. More specifi-
cally, a relation R is said to be injective if and only if VaVyVz (xRz AyRz — = = y).
It is easily seen that a relation being injective is equivalent to its inverse relation
being a function and vice versa. Consequently, we have the following fact.

Lemma 3. Let R be a relation. Then the relation R is an injective function if and
only if the inverse relation R™1 is an injective function.

1Some authors call a relation satisfying this property well-defined. In this terminology, func-
tions are simply relations that are well-defined.
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Proof. Let R be a relation that is an injective function. Since R is injective,
VaVyVz (xRz AyRz — x = y) and hence VaVyVz (zR™'x A zR7 'y — x = y),
which is exactly what it means for R~! to be a function. Since R is a function,
VaVyVz (xRy A xRz — y = z) and hence VaVyVz (yR™'x A zR™ 'z — y = 2),
which is exactly what it means for R~! to be injective. By changing the roles of R
and R™!, the proof of the right-to-left direction can be done similarly. ([l

One can easily verify that any subset of a function is itself a function. This
observation suggests the following definition.

Definition 19. Let f be a function and A be a set. The restriction of f to A is
the function

{(a,b) € f:a€ A}
and is denoted by f | A.

Definition 20. Two functions f and g are said to be compatible if f(z) = g(x) for
all z € dom(f) Ndom(g).

In other words, two functions are compatible if the values they take agree at
every element in the intersection of their domains. The following lemma shows
that two functions being compatible is equivalent to their union being a function.

Lemma 4. Let f and g be functions. Then f and g are compatible if and only if
fUg is a function.

Proof. For the left-to-right direction, assume that f and g are compatible functions.
Clearly f U g is a relation. We want to show that for all z,y, z if (z,y) € f Ug and
(x,2) € fUg, then y = z. Let (z,y) € fUg and (x,2) € f Ug. There are four
cases.

o If (z,y) € f and (z,2) € f, then y = z since f is a function.
o If (z,y) € g and (z,2) € g, then y = z since g is a function.
o If (z,y) € f and (z,2) € g, then y = z since f and g are compatible.
o If (r,y) € g and (z,2) € f, then y = z since f and g are compatible.

Thus, fUg is a function. For the converse direction, assume that fUg is a function.
Let « € dom(f) Ndom(g). Since f and g are functions, there exist y and z such
that f(z) = y and g(z) = z. Then, clearly we have (z,y), (z,z2) € f Ug. However,
by assumption f U g is a function and hence f(z) =y = z = g(z). Thus, f and ¢
are compatible. O

The following exercise shows that the lemma above can be generalized to arbi-
trary collections of compatible functions.

Exercise 10. Let S be a set such that elements of S are functions which are
pairwise compatible. Show that |J S is a function with domain | J{dom(f) : f € S}.

The next lemma shows that the class of functions are closed under the operation
of composition.

Lemma 5. Let f and g be functions. Then the composition g o f is a function.

Proof. Let z,y, z be sets such that (x,y) € gof and (z, z) € go f. We want to show
that y = 2. By definition of composition, there exist ¢’ and 2’ such that (z,y’) € f
and (y',y) € g; and (z,2") € f and (2/, z) € g. Since f is a function, (z,y’) € f and
(z,2') € f implies that y' = 2/. Since g is a function and ¢y = 2/, (v/,y) € g and
(#', 2) implies that y = z. O
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Exercise 11. Let f and g be functions. Show that the domain of the function go f
is dom(f) N f~[dom(g)] and that (go f)(z) = g(f(x)) for all x in this domain.

Given two sets x and y, a function f from z to y is an element of P(z X y) and
hence we can form the set of all functions from z to y

{f € P(x xy):VaVbVe ((a,b) € f A (a,c) € f) > b=rc}

using the axioms introduced so far. From now on, the set of all functions from
the set x to the set y will be denoted by ®y. Some authors use the notation y* to
denote this set, however, we reserve this notation for exponentiation on ordinal and
cardinal numbers in order to avoid ambiguities.

2.3. Products and sequences. Next will be discussed how to define the product
of an arbitrary collection of sets.

Recall that when we defined the cartesian product A x B of two sets, the order
of the sets A and B mattered. Even though the cartesian product B x A is in
a natural bijection with the cartesian product A x B, these are different objects
in the universe of sets. Therefore, in order to generalize the concept of cartesian
product to arbitrarily many sets, we first need to label the sets whose product is to
be taken. This labeling can be done through some function.

Let J be a set which contains the sets whose product is to be taken and possibly
other sets. Let F' : I — J be an arbitrary function. We will refer to the function
F an indezed system of sets with the index set I. Here we think of the set i € I as
the label of the set F'(i) for all ¢ € . While talking about indexed systems of sets,
it is customary to write F; instead of F(¢) and write {F; };cr instead of F[I], which
we will also refer to as an indexed system of sets.

Definition 21. Let {F;};es be an indexed system of sets with the index set I. The
product of the indexed system {F;};cr is the set

{f: 1~ J{F}lier |Viel fi) € F;}
and is denoted by [[,c; Fi-

In other words, the product [];.; F; is the set of all functions f with domain 7
such that f(i) € F; for all i € I. One usually denotes a set f € [[,.; F; using the
sequence notation (f(4))ser since f can be considered as a sequence which takes
values in F; at each component i.

Indeed, this is exactly how we define sequences over arbitrary sets. Let {S;}ier
be an indexed family of sets for some index set I such that S; = S for alli € I. An
element f of the product [[,.; S is called a sequence over S with the index set I
and is denoted by (f(7))ier-

We have not constructed the natural numbers yet. For the following exercises,
the reader should assume? that 0 =), 1 = {0} and 2 = {0,1}.

i€l

Exercise 12. Let {A;}iea be an indexed system of set with the index set 2. Show

that the map f: ][, Ai = Ao x Ay given by f(g) = (9(0), (1)) is a bijection.

2Since the notions introduced so far are enough to carry out the construction of natural num-
bers, the curious reader may read the first subsection of Section 4 for a precise construction at
this point.
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Consequently, the notion of cartesian product can be considered as a special
case of the product of an indexed system of sets. As the reader may guess, once
we define natural numbers, the cartesian product of sets Ay, ..., A, will simply be
defined as the product of the indexed family {A;}icn-

The next exercise shows that there is a natural bijection between the power set
of any set X and the product of an appropriately chosen system with index set X.

Exercise 13. Let X be any set. Show that X2 = [L;cx 2 and that the map f from
[Licx 2 to P(X) given by f(g) = {x € X : g(x) = 1} is a bijection.

We next focus on a seemingly simple question. Assume that {A;};c; is an indexed
system of sets such that A; # ) for all ¢ € I. Is the product [],.; A; necessarily
non-empty?

Given a fixed finite set I such as I = {0, 1,2}, the reader can prove as an exercise
that the answer is affirmative. As can be seen from the exercise above, the answer
is also affirmative when A4; = 2.

However, it is not clear whether or not [],.; A; # 0 for all indexed system of
sets {A;}icr with A; # 0 for all 4 € I. It turns out that this statement cannot
be proven or disproven from Axioms 1-6 plus the axioms of Infinity, Replacement
and Foundation. In the next section, we shall introduce an axiom that settles this
question.

Before we conclude this subsection, we would like to mention two notations
regarding indexed systems of sets. From now on, given an indexed system of set
{Ai}ier, we shall denote the sets (J{A;}ier and ({Ai}ier by U,;c; Ai and )¢, A4
respectively.
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