MATH 320 SET THEORY

Week 3

2.4. To choose or not to choose. In this section, we shall introduce the axiom
of choice, one of the most famous axioms of ZFC. For historical reasons, the axiom
of choice became so famous that the letter C of ZFC stands for this axiom.

There are literally dozens of equivalent formulations of the axiom of choice.
Below, we introduce the formulation which states that the product of an indexed
system of non-empty sets is non-empty. Some equivalent formulations of this axiom
will be mentioned in later sections.

Axiom 7 (The axiom of choice). For all sets I and for all indexed systems of sets
{Ai}tier with A; # 0 for alli € 1, the product [, A is non-empty’.

Recall that an element f of the product [],.; A; is a function with f(i) € A;
for all 4 € I. Loosely speaking, the function f chooses one element from each A;.
In this sense, the axiom of choice allows us to “simultaneously choose” an element
from each set in a set of non-empty sets. The reader who does not feel comfortable
with indexed systems may find the following lemma more intuitive.

Lemma 6. Let M be a set whose elements are non-empty sets. Then there exists
a function f: M — |JM such that f(z) € x for allx € M.

Proof. Notice that every set can be indexed by itself through identity function.
More precisely, let M = I and {M,},c; be the indexed system of sets with M; = i.
Then, since M; # 0 for all i € I, by the axiom of choice, there exists f: I — |JM
such that f(¢) € ¢ for all ¢ € I, which is precisely what we wanted to prove. O

It is easily seen that the axiom of choice is implied by the statement of the lemma
above together with Axioms 1-6.

3. EQUIVALENCE RELATIONS AND ORDER RELATIONS

In this section, we will learn several important types of relations. In order
to provide nice examples, we shall assume throughout this chapter that the set
of natural numbers N is already constructed together with its usual arithmetical
operations and relations. The reader who wish to see a precise construction of these
may rcad Section 4.

3.1. Equivalence relations, partitions and transversals. We begin by intro-
ducing the notion of an equivalence relation, which is frequently used when different
mathematical objects are needed to be considered “the same” for various purposes.

Definition 22. Let X be a set and E be a relation on X, i.e. EC X x X. The
relation E is said to be an equivalence relation if it is

o reflexive, i.e. for all x € X we have zEz,

e symmetric, i.e. for all x,y € X we have zEy — yEx, and

o transitive, i.e. for all x,y,z,€ X we have (tEy NyEz) — zEz.

3Unlike the other axioms introduced up to now, we shall not attempt to write the axiom of
choice in the language of set theory since it will require too much space. A curious reader may
attempt to do this in his or her free time!



BURAK KAYA

For example, the identity relation Ax is an equivalence relation on X for any set
X. Indeed, we have Ax C F for all equivalence relations £ on X. Note that the
empty set is an equivalence relation on itself and, indeed, is the unique equivalence
relation on the empty set, which will be referred to as the empty relation.

Exercise 14. Let X be any set and define the relation E C X x X by
x By <> There exists a bijection between x and y

for all x,y € X. Show that E is an equivalence relation on X.

Exercise 15. Let X be a non-empty set such that the elements of X are equivalence
relations on some fixed set Y. Show that if we have E C F or F C E for all
E,F C X, then |JX is an equivalence relation on'Y .

We next introduce some terminology to talk about elements that are related to
each other under some equivalence relation.

Definition 23. Let X be a set, I be an equivalence relation on X and x € X. The
equivalence class of x modulo E is the set

{ye X :yEx}
and is denoted by [z]g.

Given an equivalence relation E on some set X, the sets of the form [z]g for
some z € X are referred to as E-equivalence classes. Two elements in the same
FE-equivalence class are said to be E-equivalent. Observe that, according to this
definition, the empty relation on the empty set has no equivalence classes, since we
require each equivalence class of E to be of the form [z]g for some z € X.

The following lemma shows that equivalence classes of an equivalence relation
on a non-empty set are either identical or disjoint.

Lemma 7. Let X be a non-empty set and E be an equivalence relation X. Then
for all z,y € X we have that either (x| = [ylg or [x]p N [yle = 0.

Proof. Let x,y € X and assume that [z]g N [y|g # 0. Then there exists z € X such
that zEz and zFy and hence xFEy by symmetry and transitivity of E. Now pick
w € [z]g, then wEz and xEy and hence w € [y]g. This shows that [z]g C [y]|g.
By a symmetric argument, one can show that [y]g C [z]g and hence [z]g = [y]&.

This shows that [z]g = [y]g or [z]g N [y]r = 0. Since [z|g and [y]g are both
non-empty, both cases cannot occur simultaneously. Therefore, either [x]p = [y]g
or [z]g Nyle =0. U

Exercise 16. Let E be the equivalence relation on N x N defined by
P )E(r,s) < pt+s=q+r
Show that E is an equivalence relation and find the equivalence class [(2,0)] 5.

Next, we define a partition of a set and the quotient set of an equivalence relation,
notions which will be related through a fundamental theorem.

Definition 24. Let X be a set and E be an equivalence relation on X. The quotient
set of X with respect to E is the set

{[z]g:z € X}

which consists of the equivalence classes of E and is denoted by X/E.
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Definition 25. Let X be a set. Then a subset S C P(X) is said to be a partition
of X if
e clements of S are non-empty, i.c. for all A € S we have A # .
o distinct elements of S are disjoint, i.e. for all A/B € S if A # B then
ANB=0, and
o the union of S is the set X, i.e. |JS =X

According to this definition, the empty set has a unique partition, which is the
empty set itself. We remark that, in some textbooks, the notion of a partition
of a set may not be defined for the empty set. The following theorem is an casy
consequence of Lemma 7.

Theorem 4. Let X be a set and E be an equivalence relation on X. Then X/E
is a partition of X.

Proof. Left to the reader as an exercise. g

In other words, every equivalence relation on a set induces a partition. It turns
out that the converse is also true, i.e. every partition is induced by some equivalence
relation.

Lemma 8. Let S be a partition of a set X. Then the relation Eg defined by
zEsy<»3D e S (x € DAy€ D)
s an equivalence relation on X.

Proof. The claim clearly holds when X is the empty set. Now, assume that X is
non-empty and let z,y,z € X be such that tFgy and yEgz. Then, by definition,
there exist C, D € S such that x € C' and y € C; and, y € D and z € D. However,
since S is a partition, C N D # () implies that C = D. But then z € C and z € C,
which implies that (z,z) € Eg. Hence, Eg is transitive.

Showing that Eg is reflexive and symmetric is left as an exercise to the reader. [J

It is not difficult to check that different partitions of the same set induce different
equivalence relations, i.e. if S # D are partitions of a set X, then Eg # Ep.
Consequently, we have the following theorem, which some authors refer to as the
fundamental theorem of equivalence relations.

Theorem 5. Let X be any set. The map f from the set of partitions of X to the
set of equivalence relations on X given by f(S) = Es where
Es={(x,y) e XxX:dDe Sz e DAyec D}
s a bijection.
Next will be discussed the notion of a transversal of an equivalence relation.
Definition 26. Let X be a set and E be an equivalence relation on X. A subset

T C X is said to be a transversal (or, a set of representatives) for the equivalence
relation E if for cvery x € X there exists y € X such that [x]g N T = {y}.

In other words, a transversal for an equivalence relation is a set that contains
exactly one element from each equivalence class. Given a transversal T C X for an
equivalence relation F C X x X, the unique set in [x] gNT is called the representative
of the equivalence class [z]g.
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By the axiom of choice, since we can simultaneously pick one element from each
set in a set of non-empty sets, transversals exist for non-empty equivalence relations.
More precisely, we have the following theorem.

Theorem 6. Let X be a non-empty set and E be an equivalence relation on X.
Then there ezists a transversal T for E.

Proof. Since X is non-empty, the partition X/F is a set of non-empty sets. By
Lemma 6, there exists a function f : X/E — X such that f(z) € z for allz € X/E.
Notice that f picks exactly one element from each equivalence class. Thus, the range
f[X] of this function is a transversal for E. O

In the next subsection, we will solve a seemingly-impossible-to-solve puzzle using
the existence of transversals. For this puzzle, we will assume the familiarity of
the reader with finite and countably infinite sets. The reader who does not feel
comfortable using these concepts at this point may skip the next subsection and
read it after completing Section 5.

3.2. A Game of Thrones, Prisoners and Hats. After the battle of the Blackwa-
ter, King Joffrey of Westeros captured countably infinitely many soldiers of Stannis
Baratheon as his prisoners and put the set of prisoners in a bijection with the set
of natural numbers. In other words, every prisoner is uniquely labeled by some
natural number.

King Joffrey, who has been known for his cruel games, explained to the prisoners
that they would be executed the next morning, unless they succeed in the following
game that will take place before the execution:

The prisoners will be standing in a straight line in such a way that every prisoner
will be able to see the infinitely many prisoners whose labels are greater than his
label, i.e. the prisoners are standing on the number line facing the positive direction.

Then each prisoner will be randomly given a hat that is either red or blue.
The prisoners can see all the hats in front of them but cannot see their own hats.
Moreover, they are not allowed to move or communicate in any way. After all the
hats are distributed, each prisoner will be asked to guess the color of his own hat
and write his guess in a piece of paper.

The rules of the game are as follows: If there are only finitely many prisoners who
guess wrong, then all the prisoners are set free. Otherwise, they all are executed.

Once the rules are explained to the prisoners, they immediately think that it is
impossible to succeed since they are in no position to obtain information about the
colors of their own hats by looking at the colors of other prisoners’ hats.

Tyrion Lannister, who is not fond of King Joffrey and who has studied set theory
in his youth, decides to help the prisoners. Soldiers of Stannis are so smart that
they have been known to memorize infinite amount of information if necessary.
Knowing this fact, Tyrion realizes that he can set the prisoners free.

Theorem 7. There exists a survival strateqy for the prisoners.
Proof. Let E be the equivalence relation on the set N2 defined by
fEg+ ImeNVneN (n>m— f(n) =gn))

In other words, two functions from N to 2 are E-equivalent if and only if they
take the same values at sufficiently large natural numbers. We skip the details of
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checking that E is indeed an equivalence relation and leave this as an exercise to
the reader.

By Theorem 6, there exists a transversal ' C N2 for the equivalence relation F.
Let F: N2 — N2 be the function defined by

F(H=YUent

for all f € N2, that is, the function F sends each f to the unique element of T
which is F-equivalent to f. The survival strategy of the prisoners is as follows.
When asked the color of his hat, Prisoner n first constructs the function f : N — 2
defined by

e f(i) =0 for all i <mn,

e f(i) = 0 if prisoner ¢ has red hat and ¢ > n, and

e f(i) = 1 if prisoner ¢ has blue hat and i > n
In other words, Prisoner n first “encodes” the colors of the hats into a function
from N to 2, assuming that the colors of the hats he does not see are all red. Then
he guesses red if (F(f))(n) = 0 and guesses blue if (F(f))(n) = 1.

We claim that the prisoners survive if they use this strategy. To see this, let
g : N — 2 be the function that encodes the actual state of the hats after the game
starts, i.e. g(¢) = 0 if and only if the hat of Prisoner ¢ is red.

Let A : N — 2 be the unique function such that h € T and hEg. By construction,
Prisoner ¢ will guess the color of his hat based on the value h(i), i.e. he guesses red
if h(i) = 0 and blue if h(i) = 1. However, by definition, there exists m € N such
that for all n > m we have h(n) = g(n). This means that Prisoner n will guess the
color of his hat correctly for all n > m. Therefore, the prisoners survive. O

3.3. Order relations. In this subsection, we will learn about order relations, which
are frequently used in mathematics when different mathematical objects are needed
to be “compared” for various purposes.

Definition 27. Let X be a set and E be a relation on X, i.e. E C X x X. The
relation E is said to be a (partial) order relation if it is

o reflexive, i.e. for all x € X we have zFx,
o anti-symmetric, i.e. for all x,y € X we have (tEy AyFEzx) — x =y, and
e transitive, i.e. for all x,y,z,€ X we have (tEy ANyEz) = zEz.

We shall often use the symbols < or < to denote various partial order relations
and read x < y as “x is less than or equal to y”. The reader should keep in
mind that, depending on the context, relations denoted by these symbols may have
nothing to do with their usual intended meaning on various number systems.

Exercise 17. Let < be the relation on NT = {k € N : k # 0} defined by
<y IkeNT y=k -z
for all z,y € N. Show that X is a partial order relation.

Given a partial order relation < on some set X, it will sometimes be more
convenient to work with the relation < defined by v <y - 2z <y Ax # y for
all z,y € X. It turns out that those relations that are obtained from partial order
relations in this way are exactly those that are transitive and asymmetric.

Definition 28. Let X be a set and E be a relation on X, i.e. EC X x X. The
relation E is said to be a strict (partial) order relation if it is
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e asymmetric, i.e. for all v,y € X we have xEy — —yEx, and
e transitive, i.e. for all x,y,z,€ X we have (tEy NyFEz) — zEz.

Lemma 9. Let F be a strict partial order relation on X and E be the relation on
X defined by xBy <> xFy V x =1vy. Then E is a partial order relation on X.

Proof. E is clearly reflexive since z = z for all z € X. Let =,y € X such that xEy
and yFx. Then, by definition, we have xtFy V x =y and yFz V y = x. Since
F' is asymmetric, it cannot be that Fy and yFx. Thus, x = y and hence E is
anti-symmetric. To see that F is transitive, let z,y, z € X such that Ey and yEz.
Then, by definition, we have xF'y V z =y and yFz V y =z If z =y, then
xFEz. Otherwise, xFy and hence 2 Fz by transitivity of F', which implies that xEz.
Thus, E is transitive. This completes the proof that E is a partial order. U

Lemma 10. Let E be a partial order relation on X and F be the relation on X
defined by cFy <> xEy N x #vy. Then F is a strict partial order relation on X.

Proof. Let xz,y € X such that Fy. Then, by definition, zEy A z # y. If it
were the case that yFx, then we would have yEx which would imply = = y by
anti-symmetry of E, which gives a contradiction. Thus, -yFx and hence F is
asymmetric. To see that F' is transitive, let z,y,z € X such that zF'y and yF'z.
Then, by definition, xEFy A x # y and yEz A y # z. By transitivity of F, we have
xEz. If it were the case that z = z, then xEy and yEz would imply = = y, which
is a contradiction. Thus, x # z and hence xF'z, which completes the proof that F
is a strict partial order. (|

From now on, whenever we mention the induced strict partial order relation < of
a partial order relation < or the induced partial order relation < of a strict partial
order relation <, the reader should understand that z <y <z <y Vz =y and
r<ycr<y AN rFy.

Given a partial order relation < on some set, we say that two elements a and b
are said to be comparable (with respect to <) if a < b or b < a. Similarly, given
a strict partial order relation <, two elements a and b are said to be comparable
(with respect <) if a = b or a < b or b < a. If two elements are not comparable,
then they are called incomparable. Partial orders in which any two elements are
comparable will be of special importance to us.

Definition 29. Let < be a partial order relation on a set X. The relation < is said
to be a linear order relation if for all a,b € X, the elements a and b are comparable
(with respect to <).

Definition 30. Let < be a strict partial order relation on a set X. The relation <
1s said to be a strict linear order relation if for all a,b € X, the elements a and b
are comparable (with respect to <).

Exercise 18. Let X be a set that contains at least two elements. Show that the
relation E on P(X) given by
By« xCy

for all x,y € P(X) is a partial order relation which is not a linear order.
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