MATH 219
Fall 2020
Lecture 1

Lecture notes by Ozgiir Kisisel

Content: Introduction, Direction Fields, Separable Equations (parts of sections
1.1 and 1.3, section 2.2 (homogenous equations as described in problem 30 is also
covered)).

Suggested Problems: (Boyce, DiPrima, 9th edition)
§1.1: 4, 10, 15-20

81.3: 3,4, 11, 18, 26

§2.2: 4,6, 17, 23, 32, 36

1 Introduction

A differential equation is a functional equation that contains derivatives and al-
gebraic operations. Such an equation always has one or more dependent variables
which are functions of one or more independent variables. Alternatively we may
have several equations containing several variables interrelated with each other; if
this is the case we say that we have a system of differential equations. It is im-
portant to note that the solutions of a differential equation are functions, and not
numbers.

Example 1.1 Say x is a function of t. Consider the differential equation

le—j + bx = €.
The equation says that the derivative of x with respect to t plus 5 times x should
be equal to e'. The function x(t) is the unknown here and the aim is to find all
functions x(t) that satisfy this equation. We will not solve the equation for now. Is
it clear to you whether this equation has a solution or not? How many solutions
does it have?



Example 1.2 Say x and y are both functions of t. Consider the system of differ-
ential equations

-
dt v=
% + xy =sin(t)

In this case, a solution is a pair of functions (x(t),y(t)).

Example 1.3 This time, suppose that u is a function of both x and y, but assume
that © and y are two independent variables. In other words we are free to set both x
and y to any values we like. Since u is a multivariable function, it makes more sense

du
to consider partial derivatives of u: Fxpressions like T don’t make much sense but

x
ou ou

e or — do. For example, let us look at the equation
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This is a single differential equation that relates the partial derivatives of u with
respect to x and y. Solutions will be functions u(x,y) that satisfy this equality. Can
you find any?

Definition 1.1 A differential equation in which there is only one independent vari-
able is called an ordinary differential equation (abbreviated to ODE). A differ-
ential equation in which there is more than one independent variable (and therefore

includes partial derivatives) is called a partial differential equation (abbreviated
to PDE).

Example 1.4 Let x be a function of t. Consider the differential equation

d*z n dz PRI

— t+rx— +a2° =1

dt? dt
This time not only the first derivative, but also the second derivative of x appears
in the equation. The equation constrains the function x(t) by relating its second and

first derivatives and the function itself.



Definition 1.2 The highest derivative appearing in a differential equation is called
the order of that equation.

d? d
Example 1.5 The equation d_tf + xd—f + 2% =1 has order 2. Example 1.1 above
1s a first order ODE, whereas example 1.2 is a system of first order ODE’s and

example 1.3 is a first order PDE. The equation

e 5+d3—x+x—0
dt dxz? N

has order 3 (not5: The 5" power appearing in the equation is an algebraic operation,
so it does not affect its order).

2 Why are differential equations interesting?

It is a trivial matter to write down as many differential equations as one likes.
However, this is not the main focus of the subject; the topic is interesting mainly
because of its applications to real life problems. The dependent and independent
variables often represent certain physical quantities such as volume, price, velocity,
length, time etc. Applications are very diverse, spanning essentially all branches of
science and technology.

But why are differential equations useful in such areas? Why do we look at rates of
change, or rates of change of rates of change? One possible answer to this question
is related to complexity of expressions. Often, understanding or testing how a
function changes with respect to an independent variable is easier than writing a
direct formula for the function in terms of the variable. Actually, the process is often
completely opposite to creating a formula for your function by some wizardry. Here
is (arguably) the main idea of differential equations: Say we want to write down
a formula for y(t). If we know y(t) for a certain value of ¢, of ¢, and if we also
know how fast y(t) changes when we change ¢ (but now, for all values of t), not
necessarily as a function of ¢ only but as a function of both ¢ and y, then maybe we
can reconstruct y(t) from this information. If we know the rate of change of y(t) in
terms of ¢ only, this is calculus (integration). If we know it in terms of both ¢ and
y, it is differential equations.



Can we solve all differential equations by some general algorithms? The answer to
this question is an immediate “certainly not”. Even, fairly innocent looking differ-
ential equations are extremely hard or impossible to solve. We need the differential
equation to be simple in some sense if we expect to solve it explicitly. However,
simple things tend to occur often in nature, or tend to attract our attention, or they
tend to be the things that we work on and design things about. Therefore solving
simple differential equations is not a useless task at all.

Another approach to understanding differential equations is to obtain partial in-
formation about the solutions even if we cannot come up with explicit formulas.
Along with various very interesting theoretical results about general structure of so-
lutions (for example, some nice and useful inequalities rather than equations), there
are many interesting and succesful approaches to finding numerical approxima-
tions to the solutions. These two streams of activities usually take up most of the
current research on differential equations. We will not be able to cover these topics
here, however this course will provide you with the necessary background to proceed
further in these directions.

3 Solutions of first order ODE’s

Let us now concentrate on some simple differential equations. For this reason, let
us consider a single first order ODE. Therefore we have one dependent variable
(say y) and one independent variable (say t) related by a differential equation. A
function y(t) that satisfies the equation at all points ¢ in an open interval (a,b)
will be called a solution of this ODE. Note that, y(¢) must be differentiable (and
therefore continuous) in order for the equation to make sense. The number a can be
any finite number or —oo, similarly the number b can be any finite number greater
than a or 4o00.

Recall from calculus that a very effective way to understand the behaviour of a
function y(t) is by sketching its graph. The same is true for solutions of an ODE.
We call such a graph a solution curve for the ODE.

Example 3.1 An ODE may have many solutions. For example, consider the equa-
tion
dy

% = Sln(t)



This is an extremely simple differential equation since on the left hand side we have
a first derivative and on the right hand side we have a function of t only - there are
no y’s that complicate things. This is actually a calculus question. In order to find
y(t), integrate the right hand side.

y(t) = /sin(t)dt = —cos(t) +c.

These are all solutions of this differential equation. Because of the “4c” term,
there are infinitely many solutions, depending on c. If we try to graph some of
these solutions, we see that any two graphs differ by a constant shift in the vertical
direction. The graph below shows three solution curves for three different values of
¢ (and t belonging to the interval (0,27). Remember that 27 is slightly greater than

).

0.5 &

Example 3.2 As a second example, let us consider the differential equation
dy
dt

We cannot solve this example directly with the method used in the last example: If

we try to integrate the right hand side with respect to t, we have some function y

Y.



that we don’t know, so we do not know how to integrate it with respect to t. So we
get stuck at this step. We will soon see how to find all solutions of this equation
systematically. For now just notice that the equation asks for a function which is
equal to its own derivative. We know such a function from calculus: y(t) = e'. This
s one solution of the equation, but it is not the only possibility: If we multiply this
function by a constant, it is still a solution. So y(t) = ce' is a solution for any value
of the constant c. We again have a family of infinitely many solutions depending on
¢, however, now the constant ¢ appears multiplicatively (in the previous example it
was additive). Let us graph a few solutions again. The ratio of any two solutions is
a constant, but their difference is not.

Both of the examples above had infinitely many solutions. If an additional condition
on y(t) were given, for instance y(0) = 1, then the solution would be unique. In the
first example this condition says

y(0) = —cos(0) + c =1,

therefore ¢ must be equal to 2. So there is a unique solution y(¢) = — cos(t) +2. On
the graph, this means that we are picking out the curve passing through the point
t=0,y=1.



Definition 3.1 Say we have a first order ODE with dependent variable y and in-
dependent variable t. A condition of the form y(to) = yo is called an initial con-
dition.

4 Direction Fields

As mentioned before, it is often very difficult to find explicit solutions of an arbi-
trarily given differential equation. This is true even in the case of first order ODFE’s.
For instance, it is safe to bet that nobody on earth will ever be able to find formulas
for explicit solutions of a crazy looking equation like

1
ty =y
Our aim in this section will not be to solve equations, but rather to say something

about the solutions without actually finding them. Suppose that we isolate the
derivative term in a first order ODE and write the equation in the form

d
d_?i = y® + ycos(y) + sin(t?) +

d
d_i = f (ta y)

where f is some function. Solving the equation in a sense is equivalent to finding
the solution curves. We expect to have infinitely many solution curves, depending
on a constant ¢ in some way or another. We do not yet know what these curves
are, but we have the following geometric information about them: At each point
(t,y) on the plane, the value of f(t,y) equals the slope of the tangent line to the
solution curve passing through this point, simply because it is equal to the value of
the derivative. If we had the solution curves, we could easily draw these tangent
lines. But the situation is just the opposite: We know what the tangent lines look
like and we want to reconstruct the solution curves. So we can do the following:

e First, plot line segments having these slopes (f(t,y) at (¢,y)) for as many
points (t,y) as possible. Of course, since there are infinitely many points on
the plane we cannot plot them all, but by choosing a fine mesh we can draw a
large number of them. It is important to notice that we do not need to solve
the ODE for this purpose but just need to tabulate the values of f(t,y) at
these points.



e Then, sketch approximate solution curves of the differential equation. The key
point is that they must be tangent to the line segments constructed above at
each of their points. Again, this cannot be accomplished fully, but we can do
it approximately in a satisfactory way.

This will give a rough idea about what the solution curves of the differential equation
look like. Notice that at the end of this process we will not have formulas for the
solution curves, nevertheless we will obtain their approximate graphs. The initial
picture that we get after drawing the line segments is called a direction field (or
a slope field).

There is a practical method which sometimes makes the plotting of the direction
field easier: If the curves of the form f(t,y) = ¢ are easy to draw, then we can place
them on the plot as a preliminary step (in a way to be erased later on). Along such
a curve, the slope of the tangent line will be equal to ¢ throughout, so all of the slope
lines will be parallel to each other along the curve. This observation significantly
reduces the effort necessary to plot the direction field.

Example 4.1 Consider the differential equation

dy _

e y(y —1).

Here, f(t,y) = y(y — 1) and it is special in the sense that it depends only on y but
not t. Let us find f(t,y) for a few values of y, listed in the table below:

y | fl(ty)
0.5 0.75
0l o0
0.5 -0.25
110
1.510.75

This means that on the direction field, for any point with y-coordinate —0.5, we
should place a line segment of slope 0.75 etc. FEzxpand the table by making this
calculation for more values of y, maybe by using a computer. Plotting the line
segments with the calculated slopes results in the direction field below:
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Computing the field elements.
Ready.

This plot was actually obtained using the subroutine “dfield8” on Matlab, but it can
easily be drawn by hand, given enough time. Now let us plot a few solution curves on
the same graph; the rule is: “follow the direction field”. The solution curves should
be sketched in a way that they are tangent to the line segments at each point.



| Print

-
Guit
-2 0
Cursor position; (-2.61, 2.21) t
The backward orbitfrom (0.19, -1] left the computation window.
Ready.

The forward orhit from (7.2, -0.78)
The baclkward orkitfrom (7.2, -0.78) left the computation window.
Ready.

Using this sketch, we can say several things about the solution curves even though
we don’t have a single formula for any solution curve at this point:

e Solutions that have an initial value y(0) between O and 1 remain between 0 and
1 and tend to 0 as t — oco. These solutions are monotone decreasing.

e Solutions that have an initial value y(0) larger than 1 tend to infinity (actually
even before t has a chance to march off to infinity, but this is more difficult
to observe here. We will discuss this later). These solutions are monotone
INCreasing.
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o Solutions that have an initial value y(0) less than 0 tend to 0 when t — oc.
These solutions are also monotone increasing.

Of course, these are observations rather than proofs and care must be taken before
they are seriously used. For instance, after this observation, one can go back and
carefully prove that the solutions are monotone increasing for y > 1 by looking at

the sign of y(y — 1).

5 Separable Equations

Now, let us explicitly solve some equations. In this section our aim is to solve the
“simplest” ones in a sense. Believe it or not, you will come across such simple
equations as the ones discussed here very often.

As a first attempt for solving a first order ODE; it is enticing to try integrating both
sides of the equation. But this method dramatically fails for a general equation of

d
the form d—‘z = f(t,y): If f(t,y) is going to be integrated with respect to ¢, we need

to know what y is in terms of £. But this requires the knowledge of the solution of the
problem itself, so there is a circular reasoning here and it doesn’t work. Separable
equations is a special case where we can somehow algebraically separate the two
variables, so that we can do something:

Mt
Definition 5.1 Suppose that f(t,y) can be written in the form N(( ; for some func-
Y
. . _ dy  M(t) .
tions M and N. Then the differential equation pri N) 1s called a separable
Yy

differential equation.

11



If our equation is separable then we can find all of its solutions as follows:

dy _ M(1)

dt — N(y)
N = Mo

dt
/N@%ﬁ:/M@ﬁ

/N@@:/M@ﬁ

(We can pass to the fourth equation from the third one by using the chain rule.) In
the last line, the left hand integral is purely with respect to y and the right hand
integral is purely with respect to t. Therefore, in principle both can be evaluated
and we obtain a relation between y and t. This is an implicit relation. In some cases

we can explicitly solve for y(¢), but in general an implicit relation is all that we can
find.

It is a fact that in many examples the integrals obtained in this process might be
difficult to find, and even impossible sometimes. This we regard as some other type
of difficulty irrelevant to our discussion. In the worst case scenario, one can evaluate
the integrals by symbolic or numerical integrators; it is still not that bad.

Example 5.1 Find all solutions of the ODE

dy
dt

_ tet2—ln(y2)'
Solution: The equation is scary looking at first sight, but with a small algebraic
manipulation we can rewrite it as

dy tet’

dt 2

12



therefore it is separable. Multiply both sides by y* and integrate.

There are a few things to note here: The integral on the right hand side can be 0b-
tained by using the substitution u = t2. Important: There are two indefinite integrals,
yet one c is enough since equality of the integrands implies that the antiderivatives
differ by a constant. Also note that the constant ¢ appears in the final result in an
awkward place; it is neither additive nor multiplicative. Just let it stay where it is.

Example 5.2 Find all solutions of the ODE

dy _

— y(y — 2)t.
= y(y —2)

Solution: We may rewrite the equation as

y __t
dt 1/y(y —2)

but some care is needed. The two equations are equivalent if and only if y is different
from 0 or 2. We will take care of these cases separately. Now, for a moment assume

13



that y # 0 and y # 2. Then, as before,

d/y(yd—ys)/tdt
IE e
:

1
glnfy =2[—Injy)) =5 +c
-2
lny ':t2+c
Yy
-2
y=< — cet
)
B 2
y_l—cet2

A few motes are in order: To pass from the first line to the second line, write

1 A
= + — and solve for A, B. A second issue: The reader is proba-

yly—2) y—2
bly annoyed by the careless use of the constant c: Passing from line 3 to line 4,

the constant c s multiplied by 2, but it still takes all possible real values, therefore
the new constant can be written as c instead of 2c. Passing from line 4 to line 5,
everything is exponentiated, so we should have written e° instead. Lifting the abso-
lute values gives +e€. This is again an arbitrary constant, it can take all real values
except for 0. So we should note that in the last equation c is an arbitrary constant
different from 0.

What about y = 2 and y = 07 These constant functions are both solutions because

d2 do
i 2(2 —2)t and = = 0(0 — 2)t are correct identities. Actually, the solution y =

2 corresponds to the missing value ¢ = 0 in the formula above. However, the solution
y = 0 does not correspond to any special value of c, unless one prefers to think about
it as the degenerate case ¢ = 0.

There is a subtle point about the argument concerning y = 2 or y = 0. You may
rightfully ask “if y(t) # 2 for some value t could it not be equal to 2 for some other
value t27  After all, y is a function, it is not a number. This possibility seems
to create more cases which are not discussed in the argument above. The answer
(which I think would be unclear for you at this stage) is that everything is alright since
there is a fact saying that two different solution curves cannot intersect at a point.

14



However this fact depends on a deep and important result, the existence-uniqueness
theorem which we will talk about later.

6 Homogenous Equations

Some first order ODE’s are not separable, yet they become separable after a simple
substitution. In this section we will discuss one general class of such examples:
homogenous equations.

Definition 6.1 A first order ODE is said to be homogenous if it can be written

in the form
dy y
I _p(2
=" ()
for some function h.

The given form of an equation may be deceptive and this can make it tricky to
check whether the equation is homogenous. A quick test for homogeneity is as

dy y
follows: If i flt,y)=nh <¥>, then f(At,\y) = h (%) =h (%) = f(t,y) for any
A # 0. Therefore, if f(At, A\y) # f(t,y) even for one value of A, then the ODE is not

homogenous.

Example 6.1 Let

d
—y:t—i-y.

Then f(At,\y) = At +y) # t+y for almost all values of X. Therefore this ODE is
not homogenous.

Example 6.2 Let

dy ity

dt  t—vy
Then, we can rewrite this equation as

dy 1+

a 1-%
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1+v
—0

If we set h(v) = then

it = ()

therefore the equation is homogenous.

Suppose now that we have a homogenous equation % =h (%) Substitute v = y/t.
The right hand side will clearly be h(v). In order to compute the left hand side,
notice that y = vt. By the product rule,

dy  d(vt) dv

—_— = = U

dt dt dt
Therefore the equation can be written as

dv

t— =h
v+ o (v)
dv _ h(v) —v
dat t

This final equation is separable. We reduced everything to a case which we know
how to handle.

Example 6.3 Let us solve the equation

dy _1+%
a 1-14
1
Setting h(v) = ] v as above, we obtain
—v
dv  h(v) —wv
dt ot

[w=-1%

dv dt
v _, |t

1—v

(1 —v)dv
/W:hﬂﬂ—l—c

1
arctan(v) — 5 In |1+ v*| = Inl|t| +c.
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Finally, plugging in v = Y gives us an implicit relation between y and t. It seems to

me that it should be extremely difficult to write y in terms of t alone in this problem.
Let us leave it like this.
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