
MATH 219
Fall 2020

Lecture 2

Lecture notes by Özgür Kişisel

Content: Linear equations; method of integrating factors. (section 2.1).

Suggested Problems: (Boyce, DiPrima, 9th edition)

§2.1: 2, 5, 10, 14, 21, 28, 30, 32, 33, 36

1 Linear Equations, Integrating Factors

In this section we will study another special class of first order equations called
“linear equations”. We will define these equations by writing down what they look
like. This way of defining them does not clarify where the name “linear” comes
from. Things will be more lucid when we carefully study the notion of linearity in
later sections. For now, we will focus on solving these equations.

Definition 1.1 A first order ODE is called linear if it can be written in the form

dy

dt
+ p(t)y = q(t)

for some functions p(t) and q(t).

Notice that in a linear equation y must appear only in a very special way. For
instance, the equation

dy

dt
= ty2

is not linear since we have the y2 term. On the other hand, the equation

dy

dt
= ty − e−4t

is linear with p(t) = −t and q(t) = −e−4t.
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Since the right hand side of a linear equation is a function of t only, we can integrate
it with respect to t. If we could also integrate the left hand side with respect to t
then we would have solved the question. Usually, the left hand side won’t be the
derivative of a single term. But maybe after multiplying both sides with a function
of t, the new left hand side may become the derivative of a single term. We explore
this possibility now. Say we multiply both sides by a function µ(t). Since we don’t
know what function µ(t) would actually work for this purpose, let us keep it as an
unknown for now and determine it later.

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)q(t).

Can the left hand side be equal to the derivative of µ(t)y? This would require

(µ(t)y)′ = µ(t)y′ + µ(t)p(t)y

µ(t)′y + µ(t)y′ = µ(t)y′ + µ(t)p(t)y

µ(t)′y = µ(t)p(t)y

µ(t)′ = µ(t)p(t)

But the last equation that we obtained above is a separable differential equation for
the function µ(t), therefore we should be able to solve it. Indeed,∫

dµ

µ
=

∫
p(t)dt

ln |µ| =
∫
p(t)dt

µ(t) = e
∫
p(t)dt

A function µ(t) which makes the left hand side of the equation equal to the derivative
of a single term after multiplication is called an integrating factor for the ODE.
Therefore, the formula above gives us an integrating factor for any linear equation.
We suppressed the +c in the integral above: If we kept it, we would have obtained
infinitely many integrating factors all of which are scalar multiples of one another.
This is not of great importance here since if µ(t) is an integrating factor then clearly
so is any of its constant multiples.
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With this choice of µ(t), we can then proceed to solve the ODE and even obtain an
explicit formula for the solution, involving integrals:

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)q(t)

d(µ(t)y)

dt
= µ(t)q(t)

µ(t)y =

∫
µ(t)q(t)dt

y =

∫
µ(t)q(t)dt

µ(t)

This formula is great, we can even understand how y depends on the functions p(t)
and q(t) and we can estimate the effects of changing them. Since µ(t) is never zero,
the final division operation is not a problem. If p(t) and q(t) are integrable functions
then all the integrals in this formula exist - at least at a theoretical level. It is a
whole different question whether or not one can do the integrations explicitly by
pencil and paper, or by a computer.

Example 1.1 Find all solutions of the equation

y′ − y − tet = 0.

Solution: Let us first write the equation in the form

y′ − y = tet.

Therefore the equation is linear with the choices of p(t) = −1 and q(t) = tet. As in
the discussion above, set

µ(t) = e
∫
p(t)dt = e

∫
−1dt = e−t.

If we multiply the ODE by µ(t) and follow the steps above, we get

e−ty′ − e−ty = t

(e−ty)′ = t

e−ty =

∫
tdt =

t2

2
+ c

y =
t2et

2
+ cet
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Alternatively, one can directly use the formula, but it is not as much fun.

Example 1.2 Find a solution of the differential equation

ty′ + 3y =
2

t

that satisfies the initial condition y(1) = 2.

Solution: First, let us divide by t and rewrite the equation as

y′ +
3

t
y =

2

t2
,

otherwise the equation would not fit into the scheme above. Therefore the equation
is linear with p(t) = 3/t and q(t) = 2/t2. Set

µ(t) = exp

(∫
p(t)dt

)
= exp

(∫
3

t
dt

)
= exp(3 ln t) = t3.

(The diligent reader may worry about the absolute value in the natural logarithm
after integration. This does not cause a problem essentially because both ±t3 are
integrating factors. The equation is problematic at t = 0 anyway, so the intervals
(0,∞) and (−∞, 0) have to be treated separately.) Next, we multiply the ODE with
µ(t) and we have

t3y′ + 3t2y = 2t

(t3y)′ = 2t

t3y = t2 + c.

In order to determine c, we can use the initial condition now:

13y(1) = 12 + c,

therefore c = 1. Finally, the solution is

y =
1

t
+

1

t3
.
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Example 1.3 Find all solutions of the equation

dy

dx
=

y

x+ y2

Solution: The equation is not linear as given. However, let us rewrite it as if y is
the independent variable and x the dependent variable instead:

dx

dy
=
x+ y2

y
dx

dy
− x

y
= y.

In this form, the equation is linear with µ(y) = exp(
∫
−1/y dy) = y−1. We then

follow the usual steps:

y−1
dx

dy
− x

y2
= 1

(y−1x)′ = 1

y−1x = y + c

x = y2 + cy.

If one wishes to obtain an expression for y in terms of x rather than one for x in
terms of y, then it would be necessary to solve a quadratic equation. We leave this
part as an exercise. One also has to be careful with the division in the beginning and
recover the “lost” solution y = 0.

2 Exponential growth and decay

An extremely important special case of linear equations is when the coefficient in
front of the dependent variable is a constant. So, let us say that our equation is of
the form

dy

dt
+ ay = q(t).
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In this case, µ(t) = eat, therefore

(eaty)′ = eatq(t)

eaty =

∫
eatq(t)dt

y = e−at
∫
eatq(t)dt

If q(t) is simple enough, then we can carry out the integration explicitly and obtain
all solutions. We can sometimes deduce results about families of equations, as the
next example shows:

Example 2.1 Let a > 0. Show that all solutions of the differential equation

y′ + ay = b

have the same limit as t→∞, given that a > 0 and b are constants.

Solution: Let us trace the steps of the solution once again. The integrating factor

for this equation is µ(t) = exp

(∫
a dt

)
= eat. Multiplying the ODE by µ(t), we get

eaty′ + eatay = beat

(eaty)′ = beat

eaty =

∫
beatdt =

b

a
eat + c

y =
b

a
+ ce−at.

Since a > 0, we have limt→∞ ce
−at = 0 for any value of c. Therefore lim

t→∞
y(t) =

b

a
,

and this is independent of which solution we pick.

Say a > 0, c, d are constants. A function of the form y(t) = d + ceat is said to
be growing exponentially and a function of the form y(t) = d + ce−at is said
to be decaying exponentially. Exponentially growing and decaying functions
appear frequently in nature, essentially because they are solutions of a very simple
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differential equation. An exponentially growing function is clearly unbounded for
t > 0. On the other hand, an exponentially decaying function has a horizontal
asymptote as t→∞.

We will study some applications involving exponential growth or decay in the next
lecture.
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