
MATH 219
Fall 2020

Lecture 7 & 8

Lecture notes by Özgür Kişisel

Content: Systems of linear algebraic equations; Linear independence, eigenvalues,
eigenvectors.

Suggested Problems: (Boyce, Di Prima, 9th edition)

§7.3: 3, 4, 8, 14, 15, 18, 22, 25, 26 ,32

In these two lectures we will briefly go through some other topics from linear algebra
that we will need in the subsequent lectures about systems of first order linear
differential equations.

1 Matrices of Functions

Just like matrices whose entries are numbers, one can consider matrices A(t) =
(aij(t)) whose entries are functions. It then makes sense to define differentiation
and integration of matrices entry by entry. These are direct generalizations of dif-
ferentiation and integration of vector functions:

dA

dt
=

(
daij
dt

)
∫
A(t)dt =

(∫
aij(t)dt

)
Example 1.1 Say

A =

[
3t 1
0 et

]
.

Then,

dA

dt
=

[
3 0
0 et

]
∫
A(t)dt =

[
3t2/2 + c1 t+ c2

c3 et + c4

]
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2 Polynomials of Matrices, Matrix Exponentials

We defined basic arithmetic operations on matrices in the previous lecture. Us-
ing these operations, it is easy to define polynomial functions of a matrix A. For
example, if p(x) = x3 − 2x+ 5 then

p(A) = A3 − 2A+ 5I

More complicated functions of A can also be defined by using Taylor expansions.
For example recall from MATH 120 that for all x ∈ R we have

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+ . . .

Let A be an n× n matrix. Let An = A · A · ... · A. We define

eAt =
∞∑
n=0

Antn

n!
= I + At+

A2

2
t2 + . . .

In order to make sure that the above formula makes sense, it is necessary to check
that each infinite sum involved in the computation of each of its entries converges.
This turns out to be true for any constant matrix A, although we will not prove
this fact here. Therefore eAt is defined for any constant matrix A, and it is itself
a certain n × n matrix of functions. On the other hand, it is unclear at this point
how one can actually compute eAt, because computing all the matrices An entry by
entry, and then summing up all these infinite sums one by one is a formidable task.
There are better ways to do this and we will come back to this issue later.

3 Standard Inner Product of Vectors

Suppose that x and y are two row vectors of length n with complex entries. Then
their (standard) inner product is defined to be

(x,y) = xy∗.

The matrix x is 1 × n and y∗ is n × 1, therefore the result is 1 × 1, hence it is a
single complex number. If x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn] then

(x,y) =
n∑

i=1

xiȳi
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Proposition 3.1 The inner product defined above has the following properties:

• (x,y) = (y,x)

• (x,y + z) = (x,y) + (x, z)

• (cx,y) = c(x,y)

• (x, cy) = c(x,y)

• (x,x) ≥ 0

• (x,x) = 0⇔ x = 0

Proof: Exercise. �

Definition 3.1 Two vectors x and y are said to be orthogonal if (x,y) = 0.

Example 3.1 Say x = [1, 1 + i,−3] and y = [a,−1, i]. For which values of a are x
and y orthogonal?

Solution:

(x,y) = (1)(ā) + (1 + i)(−1) + (−3)(−i)
= ā− 1 + 2i

therefore the inner product is zero if and only if a = 1 + 2i. This is the only value
of a that makes the two vectors orthogonal.

4 Systems of Algebraic Equations

Before dealing with linear systems of ODE’s, let us review systems of linear algebraic
equations. Let x1, x2, . . . , xn be n variables. A set of m equations of the form

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2

. . .

am1x1 + am2x2 + . . .+ amnxn = bm

3



is called an m × n system of linear algebraic equations. One would like to find or
describe the set of all solutions of this system. It is convenient to write this system
in matrix form

Ax = b

where A = (aij) is the m×n matrix of coefficients, x = (x1, x2, . . . , xn)T is an n× 1
column vector and b = (b1, b2, . . . , bm)T is an m× 1 column vector.

4.1 Elementary Row Operations, Matrices in Echelon Form

We can solve a given linear system by eliminating variables until the system becomes
simple enough so that we can read off the solutions. A systematic way of doing this
is Gaussian elimination. We do not need to rewrite the whole system at each step
since all that we need is A and b. We will write these matrices together in the so
called “augmented form”:

[A|b].

It will be this augmented matrix that we will apply the elimination steps to. There
are three types of basic steps used in the process, called elementary row opera-
tions:

• Type 1: Multiply a row by a nonzero constant (denoted by cRi → Ri. Here
c 6= 0.)

• Type 2: Interchange two rows (denoted by Ri ↔ Rj. Here i 6= j.)

• Type 3: Add a constant multiple of one row to another row (denoted by
aRi +Rj → Rj. Here i 6= j.)

Elementary row operations have the important property that they are invertible.
An important corollary of this fact is that elementary row operations do not change
the solution set of a linear system. Indeed, let us see the inverse operations for each
type:

• The inverse operation of cRi → Ri is
1

c
Ri → Ri.

• The inverse operation of Ri ↔ Rj is Ri ↔ Rj.

• The inverse operation of aRi +Rj → Rj is −aRi +Rj → Rj.
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Using elementary row operations, at least intuitively, we can eliminate some of the
variables in some of the equations and simplify the system. How can we know that
we are at a good point to stop? This should be such a point that reading off the
solutions from the final state should be very easy and should not require too much
extra work. All of these considerations motivated the following definition:

Definition 4.1 A matrix is said to be in row echelon form if it satisfies the
following properties:

1. The first nonzero entry of each row is 1 (such elements are called leading
1’s). A row of all 0’s is also allowed.

2. All entries which are directly below a leading 1 are 0.

3. If i < j then the leading 1 on row i must be to the left of the leading 1 on row
j.

4. If there are k rows of 0’s in the matrix, then these must be the last k rows.

Example 4.1 The matrices

[
1 1 2
0 0 1

] 
1 0
0 1
0 0
0 0


are in row echelon form. However, the matrices

[
0 1
1 0

] [
0 1
0 1

] 5 0 0
0 1 1
0 0 0


are not in row echelon form.

Theorem 4.1 Any matrix can be row reduced by using a sequence of elementary
row operations until a matrix in row echelon form is obtained.

Proof: Omitted (but not difficult). �
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4.2 Gaussian elimination

Now we can explain the Gaussian elimination algorithm for solving a given linear
system of algebraic equations:

• Form the augmented matrix [A|b].

• Apply elementary row operations to [A|b] until a matrix [E|d] is obtained,
where E is in row echelon form.

• The columns of E that do not contain a leading 1 correspond to free variables.

• The columns of E containing leading 1’s should be expressed in terms of the
free variables.

We note that neither the echelon form, nor the sequence of operations chosen to
access it are uniquely determined. The choice of free variables above is also a
convention and this is not the only way to do it. However, one gets the same
solution set for the system at the end no matter which choices are made.

Example 4.2 Solve the system of equations

2x1 − 4x2 + 3x3 − x4 + x5 = 2

x1 − 2x2 + x4 + 2x5 = 4

4x1 − 8x2 + 3x3 + x4 + 5x5 = 10

Solution: First, convert the equation into matrix form Ax = b. Form the aug-
mented matrix [A|b] and apply elementary row operations:
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2 −4 3 −1 1 | 2
1 −2 0 1 2 | 4
4 −8 3 1 5 | 10

R1 ↔ R2−−−−−−→

1 −2 0 1 2 | 4
2 −4 3 −1 1 | 2
4 −8 3 1 5 | 10


−2R1 +R2 → R2−−−−−−−−−−−−→

1 −2 0 1 2 | 4
0 0 3 −3 −3 | −6
4 −8 3 1 5 | 10


R2/3→ R2−−−−−−−→

1 −2 0 1 2 | 4
0 0 1 −1 −1 | −2
4 −8 3 1 5 | 10


−4R1 +R3 → R3−−−−−−−−−−−−→

1 −2 0 1 2 | 4
0 0 1 −1 −1 | −2
0 0 3 −3 −3 | −6


−3R2 +R3 → R3−−−−−−−−−−−−→

1 −2 0 1 2 | 4
0 0 1 −1 −1 | −2
0 0 0 0 0 | 0


The final matrix is in row echelon form. Since columns 2, 4 and 5 do not contain
leading 1’s, set x2, x4 and x5 to be free variables. Then using the equation given by
the second row,

x3 − x4 − x5 = −2 ⇒ x3 = −2 + x4 + x5.

Finally, using the equation given by the first row,

x1 − 2x2 + x4 + 2x5 = 4 ⇒ x1 = 4 + 2x2 − x4 − 2x5.

Summarizing, we can write all solutions of the system in vector form as
x1
x2
x3
x4
x5

 =


4 + 2x2 − x4 − 2x5

x2
−2 + x4 + x5

x4
x5

 , x2, x4, x5 ∈ R
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An alternative way to write this solution is
x1
x2
x3
x4
x5

 =


4
0
−2
0
0

+ x2


2
1
0
0
0

+ x4


−1
0
1
1
0

+ x5


−2
0
1
0
1


In geometric terms, this gives us parametric equations for a certain 3-dimensional
(affine) linear space in R5 (please do not worry if this last sentence is obscure).

4.3 Effect of Elementary Row Operations on Determinants

Suppose that A is an n×n-matrix. Elementary row operations affect the determinant
of A in a predictable way:

Theorem 4.2 Let A be an n× n matrix. Then,

1. A row operation cRi → Ri (with c 6= 0) of type 1 multiplies the determinant
of A by c.

2. A row operation Ri ↔ Rj (with i 6= j) of type 2 multiplies the determinant of
A by −1.

3. A row operation aRi + Rj → Rj (with i 6= j) of type 3 does not change the
determinant of A.

Proof: Omitted. �

Let us note that if det(A) 6= 0, then after a sequence of elementary row operations
the determinant of the new matrix will be still nonzero. Similarly if det(A) = 0,
then after each elementary row operation, the determinant will still be 0. Therefore
elementary row operations do not change the invertibility of a matrix A.

4.4 Solutions of square systems

Suppose now that A is an n × n matrix. We can reduce A to row echelon form by
applying the steps of Gaussian elimination. There are two alternatives:
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• After Gaussian elimination, some columns do not have leading 1’s, therefore
there are free variables.

• Row reduced echelon form of A has a leading 1 on each column, in which
case A can be reduced to the identity matrix I possibly after some further
elementary row operations. In this case there are no free variables.

We can therefore deduce the following theorem:

Theorem 4.3 A matrix A is invertible if and only if it can be row reduced to the
identity matrix.

Proof: If A can be row reduced to I then det(A) cannot be zero. Hence A is
invertible. If A cannot be row reduced to I, then its row reduced echelon form must
have a row of zeros. Hence its determinant must be zero, consequently A is not
invertible. �

Suppose now that we have a linear system Ax = b. If A is invertible, then

A−1(Ax) = A−1b

x = A−1b

therefore the system has a unique solution, regardless of what b is.

On the other hand, if A is not invertible, then the row echelon form of A has some
columns without leading 1’s. Then we have two possibilities:

• There are no solutions because of a contradictory equation of the form 0 = c
with c a nonzero number,

• There are no contradictory equations, and there are free variables. Therefore,
there are infinitely many solutions.

Summarizing, including the invertible case, we have a total of three possibilities
overall.

An important special case is when b = 0. Then we say that the system is homoge-
nous. Since A0 = 0, the vector 0 is always a solution. Hence only two of the three
possibilities above remain:
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• A is invertible if and only if Ax = 0 has a unique solution, namely x = 0 (the
trivial solution),

• A is not invertible if and only if Ax = 0 has infinitely many solutions (the
system is said to have non-trivial solutions).

4.5 Inverting an invertible matrix

Suppose that A is an invertible n × n matrix. How can we compute its inverse in
practice? By definition, we need to solve for X in the equation AX = I. Suppose
that the columns of X are x1, . . . ,xn respectively. Then the equation AX = I is
equivalent to the n equations

Ax1 =


1
0
...
0

 , Ax2 =


0
1
...
0

 , . . . , Axn =


0
0
...
1


We can solve each of these linear systems by Gaussian elimination, and put together
their results in order to get X. A way to do this is to augment A by all columns of
I to get

[A|I]

and apply elementary row operations until we obtain

[I|A−1].

This is called the Gauss-Jordan method for finding A−1. Incidentally, even if we
do not know whether A is invertible or not when we begin, the row echelon form
of A will reveal this information. Hence we can apply this algorithm without first
checking invertibility.

Example 4.3 Find the inverse of the matrix

A =

1 2 3
0 1 4
5 6 0


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Solution:

[A|I] =

1 2 3 | 1 0 0
0 1 4 | 0 1 0
5 6 0 | 0 0 1

−5R1 +R3 → R3−−−−−−−−−−−−→

1 2 3 | 1 0 0
0 1 4 | 0 1 0
0 −4 −15 | −5 0 1


4R2 +R3 → R3−−−−−−−−−−−→

1 2 3 | 1 0 0
0 1 4 | 0 1 0
0 0 1 | −5 4 1


−2R2 +R1 → R1−−−−−−−−−−−−→

1 0 −5 | 1 −2 0
0 1 4 | 0 1 0
0 0 1 | −5 4 1


5R3 +R1 → R1−−−−−−−−−−−→

1 0 0 | −24 18 5
0 1 4 | 0 1 0
0 0 1 | −5 4 1


−4R3 +R2 → R2−−−−−−−−−−−−→

1 0 0 | −24 18 5
0 1 0 | 20 −15 −4
0 0 1 | −5 4 1


Therefore A is invertible and

A−1 =

−24 18 5
20 −15 −4
−5 4 1



5 Eigenvalues and Eigenvectors

Definition 5.1 Suppose that A is an n × n matrix. A vector v 6= 0 is called an
eigenvector for A if

Av = λv

for some number λ. In this case, λ is called the eigenvalue associated to v.

We can visualize multiplication by A as a map taking each vector in Rn to some
vector in Rn. Then the eigenvectors of A are those vectors whose direction is un-
changed or reversed by A. The eigenvalue represents the scaling factor of the vector.
For instance, if 0 < λ < 1, then the vector is shrunk. If λ < 0, then its direction
is reversed. If λ = 0, then the vector is sent to 0 (“killed”). We do not consider 0
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as an eigenvector itself since its direction is ambiguous to start with. However, the
number λ = 0 is a valid eigenvalue.

It is a rather special condition for a given vector to be an eigenvector of A since
multiplication by A is likely to change directions of most vectors. The intuition
behind studying eigenvalues and eigenvectors is the hope that these special vectors
and scaling factors might contain key information about the matrix A. This intuition
turns out to be correct.

Example 5.1 The vector v =

[
5
5

]
is an eigenvector for the matrix

[
2 1
1 2

]
since

Av =

[
2 1
1 2

] [
5
5

]
=

[
15
15

]
= 3

[
5
5

]

and the eigenvalue for v is 3. The vector w =

[
1
−1

]
is also an eigenvector for the

same matrix A since Aw = w. The eigenvalue for w is then 1. However, the vector

u =

[
1
4

]
is not an eigenvector for A since

Au =

[
2 1
1 2

] [
1
4

]
=

[
6
9

]
6= λ

[
1
4

]
for any value of λ.

5.1 Finding eigenvalues and eigenvectors

How can we find eigenvalues and eigenvectors of a given matrix? Suppose that v 6= 0
and Av = λv. Since both λ and v are unknown, we cannot solve this linear system
directly. But we have

Av − λv = 0

(A− λI)v = 0

Since the last equation is a homogenous system and v is a non-trivial solution, the
matrix A− λI must be non-invertible. Therefore

det(A− λI) = 0.
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This is a polynomial equation in λ and its roots are the eigenvalues of A. The
advantage of this equation over the previous ones is that only λ is unknown and v
does not appear. After finding the eigenvalues, we can go back to the linear system
and solve it in order to find the eigenvectors.

Example 5.2 Find the eigenvalues and the eigenvectors of the matrix A =

[
1 −2
3 −4

]
.

Solution:

det(A− λI) =

∣∣∣∣1− λ −2
3 −4− λ

∣∣∣∣ = 0

(1− λ)(−4− λ) + 6 = 0

λ2 + 3λ+ 2 = 0

(λ+ 2)(λ+ 1) = 0

Therefore the eigenvalues of A are λ1 = −2 and λ2 = −1. In order to find the
eigenvectors for λ1, solve the linear system (A− λ1I)v = 0:[

3 −2 | 0
3 −2 | 0

]
−R1 +R2 → R2−−−−−−−−−−−→

[
3 −2 | 0
0 0 | 0

]
R1/3→ R1−−−−−−−→

[
1 −2/3 | 0
0 0 | 0

]

Set v2 to be a free variable. Then the eigenvectors are v =

[
2v2/3
v2

]
where v2 6= 0 is

a real number.

The eigenvectors for λ2 can be found by solving (A− λ2I)v = 0:[
2 −2 | 0
3 −3 | 0

]
R1/2→ R1−−−−−−−→

[
1 −1 | 0
3 −3 | 0

]
−3R1 +R2 → R2−−−−−−−−−−−−→

[
1 −1 | 0
0 0 | 0

]

Again, set v2 to be free. Then the eigenvectors for λ2 = −1 are v =

[
v2
v2

]
where

v2 6= 0.

Example 5.3 Find the eigenvalues and eigenvectors of the matrix

 1 1 2
0 2 2
−1 1 3

.
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Solution:

det(A− λI) =

∣∣∣∣∣∣
1− λ 1 2

0 2− λ 2
−1 1 3− λ

∣∣∣∣∣∣ = 0

(1− λ)

∣∣∣∣2− λ 2
1 3− λ

∣∣∣∣− 1

∣∣∣∣ 0 2
−1 3− λ

∣∣∣∣+ 2

∣∣∣∣ 0 2− λ
−1 1

∣∣∣∣ = 0

(1− λ)[(2− λ)(3− λ)− 2]− 1[0− (−2)] + 2[0− (−(2− λ))] = 0

(1− λ)(λ2 − 5λ+ 4) + (2− 2λ) = 0

(1− λ)(λ2 − 5λ+ 6) = 0

(1− λ)(λ− 2)(λ− 3) = 0

Therefore λ1 = 1, λ2 = 2, λ3 = 3. Eigenvectors for λ1 = 1 are solutions of
(A− I)v = 0:  0 1 2 | 0

0 1 2 | 0
−1 1 2 | 0

R1 ↔ R3−−−−−−→

−1 1 2 | 0
0 1 2 | 0
0 1 2 | 0


−R1 → R1−−−−−−−→

1 −1 −2 | 0
0 1 2 | 0
0 1 2 | 0


−R2 +R3 → R3−−−−−−−−−−−→

1 −1 −2 | 0
0 1 2 | 0
0 0 0 | 0


R2 +R1 → R1−−−−−−−−−−→

1 0 0 | 0
0 1 2 | 0
0 0 0 | 0


(Although the last step is not necessary, it simplifies the set of equations.) Since

column 3 does not have a leading 1, set v3 to be a free variable. Then, v =

 0
−2v3
v3


with v3 6= 0 are the eigenvectors for λ1 = 1.
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Eigenvectors for λ2 = 2 are solutions of (A− 2I)v = 0:−1 1 2 | 0
0 0 2 | 0
−1 1 1 | 0

−R1 → R1−−−−−−−→

 1 −1 −2 | 0
0 0 2 | 0
−1 1 1 | 0


R1 +R3 → R3−−−−−−−−−−→

1 −1 −2 | 0
0 0 2 | 0
0 0 −1 | 0


R2/2→ R2−−−−−−−→

1 −1 −2 | 0
0 0 1 | 0
0 0 −1 | 0


R2 +R3 → R3−−−−−−−−−−→

1 −1 −2 | 0
0 0 1 | 0
0 0 0 | 0


This time, column 2 does not have a leading 1, therefore set v2 to be a free variable.

The eigenvectors are v =

v2v2
0

 with v2 6= 0.

Eigenvectors for λ3 = 3 are solutions of (A− 3I)v = 0:−2 1 2 | 0
0 −1 2 | 0
−1 1 0 | 0

R1 ↔ R3−−−−−−→

−1 1 0 | 0
0 −1 2 | 0
−2 1 2 | 0


−R1 → R1−−−−−−−→

 1 −1 0 | 0
0 −1 2 | 0
−2 1 2 | 0


2R1 +R3 → R3−−−−−−−−−−−→

1 −1 0 | 0
0 −1 2 | 0
0 −1 2 | 0


−R2 → R2−−−−−−−→

1 −1 0 | 0
0 1 −2 | 0
0 −1 2 | 0


R2 +R3 → R3−−−−−−−−−−→

1 −1 0 | 0
0 1 −2 | 0
0 0 0 | 0


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The third column does not contain a leading 1, so set v3 to be a free variable. The

eigenvectors for λ3 = 3 are v =

2v3
2v3
v3

 with v3 6= 0.

Example 5.4 Find all eigenvalues and eigenvectors of the matrix

[
1 −3
5 −3

]
.

Solution:

det(A− λI) =

∣∣∣∣1− λ −3
5 −3− λ

∣∣∣∣ = 0

(1− λ)(−3− λ) + 15 = 0

λ2 + 2λ+ 12 = 0

(λ+ 1)2 = −11

λ1 = −1 + i
√

11, λ2 = −1− i
√

11

Notice that the eigenvalues are complex numbers. Also notice that λ2 = λ1. For a
real matrix A, its complex eigenvalues must arise in conjugate pairs since

Av = λv ⇒ Av = λv

⇒ Av = λv

Additionally, we obtain that the eigenvectors for λ are complex conjugates of the
eigenvectors for λ. So it is enough to compute the eigenvectors of λ1 = −1 + i

√
11:[

2− i
√

11 −3 | 0

5 −2− i
√

11 | 0

]
R1/(2− i

√
11)→ R1−−−−−−−−−−−−−−−→

[
1 −2/5− i

√
11/5 | 0

5 −2− i
√

11 | 0

]
−5R1 +R2 → R2−−−−−−−−−−−−→

[
1 −2/5− i

√
11/5 | 0

0 0 | 0

]

So we can set v2 to be a free variable and the eigenvectors are v =

[
(2/5 + i

√
11/5)v2

v2

]
where v2 6= 0 is a complex number. There are no real eigenvectors in this case; any
eigenvector must have a nonzero imaginary part.
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