
MATH 219
Fall 2020

Lecture 9

Lecture notes by Özgür Kişisel

Content: Basic theory of systems of first order linear equations. Homogeneous
linear systems with constant coefficients.

Suggested Problems: (Boyce, Di Prima, 9th edition)

§7.4: 3, 7

§7.5: 9, 10, 14, 17, 31

After a quick discussion of linear independence, which is a linear algebra concept, in
this lecture we will begin our investigation of systems of first order linear differential
equations.

1 Linear Independence

Definition 1.1 Suppose that v1, . . . ,vn are vectors. A vector of the form

c1v1 + c2v2 + . . .+ cnvn,

where c1, . . . , cn are constants, is called a linear combination of v1, . . . ,vn .

Definition 1.2 A set of vectors {v1, . . . ,vn} is said to be linearly independent
if

c1v1 + c2v2 + . . .+ cnvn = 0⇒ c1 = c2 = . . . = cn = 0

A set of vectors which is not linearly independent is called linearly dependent. There
is an alternative formulation of linear independence. Suppose that the set is linearly
dependent. Then there exist constants c1 . . . , cn, at least one of which is nonzero,
such that c1v1 + c2v2 + . . .+ cnvn = 0. Suppose that ci 6= 0. Then

civi = −c1v1 − . . .− ci−1vi−1 − ci+1vi+1 − . . .− cnvn

vi = −c1
ci

v1 − . . .−
ci−1
ci

vi−1 −
ci+1

ci
vi+1 − . . .−

cn
ci

vn.
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Therefore, a set of vectors is linearly independent if and only if none of the vectors
in the set can be expressed as a linear combination of the remaining vectors.

Example 1.1 Determine whether the set of vectors {v1,v2,v3} below is linearly
independent or not:

v1 =

1
3
6

 , v2 =

3
4
5

 , v3 =

 5
0
−9


Solution: Suppose that c1v1 + c2v2 + c3v3 = 0. Then

c1 + 3c2 + 5c3 = 0

3c1 + 4c2 = 0

6c1 + 5c2 − 9c3 = 0

This is a linear system. Convert to matrix form and row reduce:1 3 5 | 0
3 4 0 | 0
6 5 −9 | 0

−3R1 +R2 → R2,−6R1 +R3 → R3−−−−−−−−−−−−−−−−−−−−−−−−−−→

1 3 5 | 0
0 −5 −15 | 0
0 −13 −39 | 0


−R2/5→ R2−−−−−−−−−→

1 3 5 | 0
0 1 3 | 0
0 −13 −39 | 0

 13R2 +R3 → R3−−−−−−−−−−−−→

1 3 5 | 0
0 1 3 | 0
0 0 0 | 0


Hence c3 is free. In particular there are solutions of the equation other than c1 =
c2 = c3 = 0. This means that {v1,v2,v3} is linearly dependent.

We can make a similar definition for a set of functions:

Definition 1.3 We say that a set of functions {f1(t), . . . , fn(t)} is linearly inde-
pendent if the equation c1f1(t) + . . .+ cnfn(t) = 0 for all t implies c1 = c2 = . . . =
cn = 0.

Example 1.2 Show that {et, e−t, 1} is a linearly independent set of functions.
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Solution: Suppose that c1e
t+c2e

−t+c3 ·1 = 0 for all t. Choose some specific values
of t in order to get a 3× 3 linear system:

t = 0⇒ c1 + c2 + c3 = 0

t = 1⇒ c1e+
c2
e

+ c3 = 0

t = −1⇒ c1
e

+ c2e+ c3 = 0

Now let us write these equations in matrix form and row reduce. 1 1 1 | 0
e 1/e 1 | 0

1/e e 1 | 0

−eR1 +R2 → R2,−
1

e
R1 +R3 → R3

−−−−−−−−−−−−−−−−−−−−−−−−−−−→

1 1 1 | 0
0 1/e− e 1− e | 0
0 e− 1/e 1− 1/e | 0


R2 +R3 → R3−−−−−−−−−−→

1 1 1 | 0
0 1/e− e 1− e | 0
0 0 2− e− 1/e | 0


We can row reduce this system further but it is clear at this point that we will
eventually get a leading 1 in each column. Therefore there are no free variables, and
the only solution is c1 = c2 = c3 = 0. Hence the given set is linearly independent.

There is another elegant way to test a set of functions for independence if the
functions have derivatives upto a certain order. Suppose that f1, . . . , fn are functions
of t which are differentiable n−1 times. In order to test them for linear independence,
we start from the equation

c1f1(t) + c2f2(t) + . . .+ cnfn(t) = 0

which is assumed to hold for all t. We differentiate this equation with respect to t
n− 1 times in order to get a linear system:

c1f1 + c2f2 + . . .+ cnfn = 0

c1f
′
1 + c2f

′
2 + . . .+ cnf

′
n = 0

. . .

c1f
(n−1)
1 + c2f

(n−1)
2 + . . .+ cnf

(n−1)
n = 0

We can write this linear system in matrix form
f1 f2 . . . fn
f ′1 f ′2 . . . f ′n

. . .

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n



c1
c2
. . .
cn

 =


0
0
. . .
0


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If the n×n matrix above is invertible then the only solution is c1 = c2 = . . . = cn = 0.
Invertibility of this matrix can be tested by looking at its determinant. Therefore
let us define

W (f1, f2, . . . , fn) =

∣∣∣∣∣∣∣∣
f1 f2 . . . fn
f ′1 f ′2 . . . f ′n
. . . . . . . . . . . .

f
(n−1)
1 f

(n−1)
2 . . . f

(n−1)
n

∣∣∣∣∣∣∣∣ .
This determinant is called the Wronskian of f1, f2, . . . , fn (as an ordered n-tuple).
Notice that the Wronskian is a function of t itself. The discussion above implies:

Theorem 1.1 If the Wronskian of a set of functions is not zero even for one value
of t, then the set of functions is linearly independent.

Example 1.3 Show that {er1t, er2t, er3t} is independent if r1, r2, r3 are distinct.

Solution:

W (er1t, er2t, er3t) =

∣∣∣∣∣∣
er1t er2t er3t

r1e
r1t r2e

r2t r3e
r3t

r21e
r1t r22e

r2t r23e
r3t

∣∣∣∣∣∣
= er1ter2ter3t

∣∣∣∣∣∣
1 1 1
r1 r2 r3
r21 r22 r23

∣∣∣∣∣∣
= e(r1+r2+r3)t

∣∣∣∣∣∣
1 0 0
r1 r2 − r1 r3 − r1
r21 r22 − r21 r23 − r21

∣∣∣∣∣∣
= e(r1+r2+r3)t(r2 − r1)(r3 − r1)

∣∣∣∣∣∣
1 0 0
r1 1 1
r21 r2 + r1 r3 + r1

∣∣∣∣∣∣
= e(r1+r2+r3)t(r2 − r1)(r3 − r1)

∣∣∣∣∣∣
1 0 0
r1 1 0
r21 r2 + r1 r3 − r2

∣∣∣∣∣∣
= e(r1+r2+r3)t(r2 − r1)(r3 − r1)(r3 − r2)

∣∣∣∣∣∣
1 0 0
r1 1 0
r21 r2 + r1 1

∣∣∣∣∣∣
= e(r1+r2+r3)t(r2 − r1)(r3 − r1)(r3 − r2).
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Since r1, r2, r3 are distinct, the Wronskian is not (actually never) zero. Therefore
{er1t, er2t, er3t} is linearly independent.

Exercise: By suitably generalizing the method of the previous example, show that
{er1t, . . . , ernt} is linearly independent if r1, r2, . . . , rn are distinct real or complex
numbers.

2 Basic Theory of Systems of First Order Linear

ODE’s

Let us first consider the case of homogenous systems of first order linear ODE’s,
namely, systems of the form:

dx

dt
= A(t)x. (1)

Theorem 2.1 (Principle of superposition) Suppose that x(1),x(2) are solutions of
(1). Then any linear combination c1x

(1) + c2x
(2) is also a solution where c1, c2 are

constants.

Proof Put c1x
(1) + c2x

(2) in (1) and see if it works:

d

dt
(c1x

(1) + c2x
(2)) = c1

dx(1)

dt
+ c2

dx(2)

dt
= c1A(t)x(1) + c2A(t)x(2)

= A(t)(c1x
(1) + c2x

(2))

Therefore c1x
(1) + c2x

(2) is a solution of (1). �

We now want to construct a set of solutions of (1) so that any other solution is
a linear combination of them. The solutions in this set will in a sense be basic
building blocks for the space of all solutions. We want to do this in a way that we
have just the necessary number of building blocks and no redundant ones. In order
to construct these solutions we appeal to the existence-uniqueness theorem; since at
this point the system is very general, it is difficult to write down an explicit solution
so we really need this theoretical tool. Let t0 be any point in the intersections of
the domains of continuity of the entries of A(t).
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Consider the initial value problem:

dx

dt
= Ax, x(t0) =



0
...
0
1
0
...
0


where the only 1 in the vector above is at the ith position. By the existence-uniqeness
theorem, this initial value problem has a unique solution x(i).

Theorem 2.2 The set of vector functions {x(1),x(2), . . . ,x(n)} is linearly indepen-
dent.

Solution: Suppose that c1x
(1) + c2x

(2) + . . . + cnx
(n) = 0. Evaluate both sides at

t0. This immediately gives us 
c1
c2
...
cn

 = 0.

So each ci is 0 and therefore, by definition, {x(1),x(2), . . . ,x(n)} is linearly indepen-
dent. �

Theorem 2.3 Every solution of the system (1) can be written as a linear combina-
tion of x(1),x(2), . . . ,x(n) (in a unique way).

Proof Suppose that x is an arbitrary solution of (1). Say x(t0) =

k1...
kn

. Then

k1x
(1) + k2x

(2) + . . . + knx
(n) and x have the same value at t0 and they are both

solutions of (1). Therefore, by the existence-uniqueness theorem

x(t) = (k1x
(1) + k2x

(2) + . . .+ knx
(n))(t)
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for all t. The uniqueness of this representation follows from the linear indepen-
dence of {x(1),x(2), . . . ,x(n)}: Indeed, suppose that x can be written as a linear
combination in two ways

x = k1x
(1) + k2x

(2) + . . .+ knx
(n) = l1x

(1) + l2x
(2) + . . .+ lnx

(n).

Subtracting the two expressions on the right from one another, we get

(k1 − l1)x(1) + (k2 − l2)x(2) + . . .+ (kn − ln)x(n) = 0.

Since {x(1),x(2), . . . ,x(n)} is linearly independent, this relation implies that ki−li = 0
for each i, therefore ki = li. Hence these coefficients are uniquely determined. (An
alternative way for this last step would be to look at the initial values at t0 once
again.) �

Definition 2.1 A linearly independent set B of solutions of (1) such that every
solution of (1) is expressible as a linear combination of elements of B is said to be
a basis (or fundamental set) for the space of solutions.

The results above say that {x(1),x(2), . . . ,x(n)} constructed in the way above is a
basis for the space of solutions. This basis is not unique; solutions constructed in
totally different ways could satisfy the conditions of being a fundamental set. We
can use the following results from linear algebra to test whether or not a given set
of solutions is a basis:

Theorem 2.4 (1) Any two bases for the same solution space have the same number
of elements. In particular, if A is an n×n matrix, then any basis for for the solution
space has n elements.

(2) Any linearly independent set containing n solutions is a basis.

These facts imply that for an n× n linear, homogenous system, it suffices to find n
linearly independent solutions. Then every other solution is a linear combination of
these.

In linear algebra jargon, one would summarize the results found above by saying
that the solution set of an n× n first order linear homogeneous system of
differential equations is a vector space of dimension n.
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3 Constant Coefficient Systems

Consider the system
dx

dt
= Ax where A is a constant matrix. Let us look for solutions

of this system of the form x(t) = veλt where v is a constant vector. In order for this
vector function to be a solution of the system, we must have

dx

dt
=

d(veλt)

dt
= λveλt.

On the other hand
dx

dt
= Ax = Aveλt. So, equivalent ways of writing the condition

for x to be a solution are

Aveλt = λveλt

Av = λv

This last equation holds if and only if v is and eigenvector of A with eigenvalue
λ. This is nice, because we now have a mechanism for producing some solutions

of
dx

dt
= Ax: Compute eigenvalues and eigenvectors of A. For each eigenvector-

eigenvalue pair (v, λ) we have a solution x(t) = veλt. But please beware that this
analysis definitely doesn’t tell us that all solutions of the system are of this form.
Instead, we will try to use the basic theory discussed in the last section in order to
find all solutions of the system, by using these special solutions as building blocks.

Example 3.1 Solve the system

x′1 = 2x1 + x2

x′2 = x1 + 2x2

Solution: First, write the system in matrix form

d

dt

[
x1
x2

]
=

[
2 1
1 2

] [
x1
x2

]
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We start by finding the eigenvalues and eigenvectors of A =

[
2 1
1 2

]
.

det(A− λI) =

∣∣∣∣2− λ 1
1 2− λ

∣∣∣∣
= (2− λ)2 − 1

= (3− λ)(1− λ).

Therefore the eigenvalues are λ1 = 3 and λ2 = 1. Eigenvectors for λ1 = 3 are
solutions of the system[

−1 1 | 0
1 −1 | 0

]
R1 ↔ R2−−−−−−→

[
1 −1 | 0
−1 1 | 0

]
R1 +R2 → R2−−−−−−−−−−→

[
1 −1 | 0
0 0 | 0

]
.

The eigenvectors for λ1 = 3 are then v = k

[
1
1

]
with k 6= 0. For this pair, we can

write the solution x(1)(t) =

[
1
1

]
e3t. Next, let us look at eigenvectors for λ2 = 1:[

1 1 | 0
1 1 | 0

]
−R1 +R2 → R2−−−−−−−−−−−→

[
1 1 | 0
0 0 | 0

]
.

Therefore the eigenvectors for λ2 = 1 are v = k

[
−1
1

]
. For this pair, we can write

the solution x(2)(t) =

[
−1
1

]
et.

Is the set {x(1),x(2)} linearly independent? We can look at the Wronskian of these
two functions:

W (x(1),x(2)) =

∣∣∣∣e3t −ete3t et

∣∣∣∣ = 2e4t 6= 0.

Therefore the set is linearly independent. Now, by the basic theory discussed in
the previous section, the system must have a fundamental set consisting of two lin-
early independent solutions. And we have already found two linearly independent
solutions. This implies that all solutions of the system are

x = c1

[
e3t

e3t

]
+ c2

[
−et
et

]
with c1, c2 ∈ R.
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Example 3.2 Solve the system

x′ =

 1 1 2
0 2 2
−1 1 3

x

Solution: The eigenvalues and eigenvectors of the coefficient matrix were computed
in Lecture 7. They were,

λ1 = 1, v = k

 0
−2
1


λ2 = 2, v = k

1
1
0


λ3 = 3, v = k

2
2
1


We can write three solutions associated to this data, by choosing one specific eigen-
vector for each of these three eigenvalues:

x(1) =

 0
−2
1

 et, x(2) =

1
1
0

 e2t, x(3) =

2
2
1

 e3t
Let us check the independence of these solutions:

W (x(1),x(2),x(3)) =

∣∣∣∣∣∣
0 e2t 2e3t

−2et e2t 2e3t

et 0 e3t

∣∣∣∣∣∣
= ete2te3t

∣∣∣∣∣∣
0 1 2
−2 1 2
1 0 1

∣∣∣∣∣∣
= 2e6t 6= 0

Since we have a set of 3 linearly independent solutions for a 3×3 system, they must
form a basis, again by the basic theory. Therefore all solutions of the system are

x = c1

 0
−2et

et

+ c2

e2te2t
0

+ c3

2e3t

2e3t

e3t


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where c1, c2, c3 ∈ R.

Let us now consider the most general constant coefficient homogenous system x′ =
Ax, where A is a constant n×n matrix, and analyze the possibilities that could occur
in the process above. First, suppose that the matrix A has n linearly independent
eigenvectors {v(1),v(2), . . . ,v(n)} corresponding to eigenvalues λ1, . . . , λn (the λi’s
need not be distinct). If we set x(i) = v(i)eλit as usual, then

W (x(1),x(2), . . . ,x(n)) =
∣∣v(1)eλ1t | v(2)eλ2t | . . . | v(n)eλnt

∣∣
= e(λ1+...+λn)t

∣∣v(1) | v(2) | . . . | v(n)
∣∣

6= 0

since {v(1),v(2), . . . ,v(n)} is a linearly independent set. This implies that all solu-
tions of the system are

x = c1v
(1)eλ1t + c2v

(2)eλ2t + . . .+ cnv
(n)eλnt

Remark 3.1 Not all n × n matrices have n linearly independent eigenvectors. As a

simple example, let A =

[
2 1
0 2

]
. Then

det(A− λI) = (2− λ)2.

Therefore A has only one eigenvalue, λ = 2. In order to find the corresponding
eigenvectors, we solve [

0 1 | 0
0 0 | 0

]
The coefficient matrix is already in row echelon form. The variable v1 is free and

v2 = 0. Therefore, all eigenvectors are of the form v = k

[
1
0

]
. It is clear that we

can choose at most one linearly independent eigenvector from this set. Any second
eigenvector that is chosen would be a multiple of the first one. So, it is impossible to

solve the system
dx

dt
= Ax for this matrix A, or for other matrices lacking n inde-

pendent eigenvectors, by using only the ideas above. In order to complete the story
for such systems, we will need some new ideas to be developed in the forthcoming
lectures.
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The following result gives us a sufficient condition for the existence of n linearly
independent eigenvectors of an n× n matrix A.

Theorem 3.1 If an n× n matrix A has n distinct eigenvalues λ1, . . . , λn, then the
corresponding eigenvectors v(1), . . . ,v(n) are linearly independent.

Proof: We will prove the statement by contradiction. Contrary to the claim, suppose
that {v(1), . . . ,v(n)} is not linearly independent. Suppose that i is the least number
such that v(i) is expressible as a linear combination of the previous elements of the
set. Then we have a relation of the form

v(i) = c1v
(1) + c2v

(2) + . . .+ ci−1v
(i−1)

We obtain two equations from this one: First by applying A to both sides (and using
Av(j) = λjv

(j)), second by multiplying it by λi.

λiv
(i) = c1λ1v

(1) + c2λ2v
(2) + . . .+ ci−1λi−1v

(i−1)

λiv
(i) = c1λiv

(1) + c2λiv
(2) + . . .+ ci−1λiv

(i−1)

Subtracting the second equation from the first one, we get

0 = c1(λ1 − λi)v(1) + c2(λ2 − λi)v(2) + . . .+ ci−1(λi−1 − λi)v(i−1).

The set of vectors {v(1),v(2), . . . ,v(i−1)} is linearly independent since we assumed
that i was the minimal number for which there is a linear dependence. Therefore
cj(λj − λi) = 0 for all j ∈ {1, 2, . . . , i − 1}. Since λj 6= λi, we get cj = 0 for each
j ≤ i− 1. This implies v(i) = 0, which is a contradiction. �

Remark 3.2 The sufficient condition above is by no means necessary. In other words,
it is possible that some of the eigenvalues are equal, yet there are n linearly inde-
pendent eigenvectors. A trivial example is when A = kI for some k, where I is the
identity matrix. Then all eigenvalues are k, but any nonzero vector is an eigenvector.
Hence there are n independent eigenvectors in this case.
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