
MATH 219
Fall 2020

Lecture 11

Lecture notes by Özgür Kişisel

Content: Fundamental Matrices. Repeated eigenvalues.

Suggested Problems: (Boyce, Di Prima, 9th edition)

§7.7: 3, 8, 10, 11

§7.8: 2c, 3c, 6, 9a, 17, 18, 19

1 Matrix Exponentials, Fundamental Matrices

Let A be a constant n×n matrix. Using the Taylor expansion of ex one can define:

eAt =
∞∑
k=0

(At)k

k!
.

It is a fact that the infinite series obtained for each matrix entry on the right hand
side is convergent for any choice of constant real matrix A. Furthermore, one can
apply term by term differentiation and get

d

dt
(eAt) =

∞∑
k=0

d

dt

(
(At)k

k!

)
=
∞∑
k=1

A
(At)k−1

(k − 1)!
= AeAt.

Therefore each column vector of eAt satisfies the homogenous linear system
dx

dt
= Ax

that we are trying to solve.

Lemma 1.1 The n column vectors of the matrix eAt are linearly independent. (Equiv-
alently, eAt is an invertible matrix.)
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Proof: Say x(1), . . . ,x(n) are the column vectors of eAt. Suppose that c1x
(1) + . . .+

cnx
(n) = 0. Note that this equation is equivalent to the matrix equation

eAt


c1
c2
. . .
cn

 = 0.

Put t = 0. Then e0t = I, therefore c1 = . . . = cn = 0. Therefore the columns of eAt

are linearly independent. �

Theorem 1.1 Let A be a constant n×n matrix. The columns of eAt give us a basis

for the solution space of
dx

dt
= Ax.

Proof: This is a direct consequence of the previous lemma and the basic theory
discussed in lecture 9. �

Caution: It is essential that A is a constant matrix in order for the equation
d

dt
(eAt) = AeAt to be correct. Exactly for this reason, if A is not a constant matrix,

then the exponential matrix eAt becomes practically useless for our purposes.

Definition 1.1 Consider the homogenous linear system
dx

dt
= A(t)x (where A may

or may not be a constant matrix this time). An n × n matrix Ψ(t) is called a
fundamental matrix for this system if

1.
dΨ

dt
= AΨ,

2. Ψ is invertible.

If A is a constant matrix then the above discussion shows us that Φ(t) = eAt is a
fundamental matrix for the system, with the additional property Φ(0) = I.
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2 Eigenvectors and eAt

If A is a constant matrix then the discussion above showed us that finding eAt

will give us all solutions of the system
dx

dt
= Ax. This is very enticing. But how

can we compute this exponential matrix in practice? We cannot exponentiate the
entries one by one, that will not give us the same result as the Taylor series which
was the actual definition. A direct approach of computing the Taylor series is very
cumbersome if the matrix has many non-zero entries. We need another systematic
way to compute the exponential. We start from the easiest possible cases and
progress towards the general case:

1. Diagonal case: Suppose that A is a diagonal matrix

A =


d1 0
0 d2 0

. . .
0 dn


In this case the computation of eAt is very easy, since multiplying diagonal matrices
with each other is very easy:

eAt =
∞∑
k=0

(At)k

k!

=
∞∑
k=0

1

k!


(d1t)

k 0
0 (d2t)

k 0
. . .
0 (dnt)

k



=


ed1t 0
0 ed2t 0

. . .
0 ednt


Notice that it is hopeless to generalize this computation to non-diagonal matrices
in the same way, since matrix multiplications at each step will become much more
complicated in general.

2. Diagonalizable case: Next, we assume that the n×n matrix A has n linearly in-
dependent eigenvectors v(1), . . . ,v(n) with eigenvalues λ1, . . . , λn respectively. Some
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of these eigenvalues may be equal. Then we have the following nice matrix equation:

A
[
v(1) | . . . | v(n)

]
=

[
λ1v

(1) | . . . | λnv
(n)
]

=
[
v(1) | . . . | v(n)

] 
λ1 0
0 λ2 0

. . .
0 λn



So, if we say P =
[
v(1) | . . . | v(n)

]
and D =


λ1 0
0 λ2 0

. . .
0 λn

 then this

equation can be written in the form AP = PD. Since the eigenvectors are assumed
to be linearly independent, the matrix P is invertible and we have

A = PDP−1

In this case, we say that A is diagonalizable. Using the last equation, we can
compute eAt by using some beautiful matrix algebra:

Ak = (PDP−1)(PDP−1) . . . (PDP−1)

= PDP−1PDP−1P . . . P−1PDP−1

= PDkP−1

Here, the associative property of matrix multiplication was used.

eAt =
∞∑
k=0

(At)k

k!

=
∞∑
k=0

PDkP−1

k!
tk

= P

(
∞∑
k=0

Dk

k!
tk

)
P−1

= PeDtP−1

Snce D is a diagonal matrix, the middle term in this product is easy to compute as in
case 1. So this gives us a very manageable way to compute the matrix exponential.
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Example 2.1 Let A =

[
4 1
1 4

]
. Find eAt and consequently find all solutions of the

homogenous system
dx

dt
= Ax.

Solution:

det(A− λI) =

∣∣∣∣4− λ 1
1 4− λ

∣∣∣∣ = (5− λ)(3− λ)

therefore the eigenvalues are λ1 = 3 and λ2 = 5. Let us find the eigenvectors for
λ1 = 3: [

1 1 | 0
1 1 | 0

]
−R1 +R2 → R2−−−−−−−−−−−→

[
1 1 | 0
0 0 | 0

]
so the eigenvalues for λ1 = 3 are vectors of the form k

[
−1
1

]
with k 6= 0. Next, let

us find the eigenvectors for λ2 = 5:[
−1 1 | 0
1 −1 | 0

]
R1 ↔ R2−−−−−−→

[
1 −1 | 0
−1 1 | 0

]
R1 +R2 ↔ R2−−−−−−−−−−→

[
1 −1 | 0
0 0 | 0

]

so the eigenvalues for λ2 = 5 are vectors of the form k

[
1
1

]
with k 6= 0. Let us pick

v(1) =

[
−1
1

]
and v(2) =

[
1
1

]
. Then

P =

[
−1 1
1 1

]
, D =

[
3 0
0 5

]
We can compute P−1 to be

P−1 =
1

2

[
−1 1
1 1

]
Hence,

eAt = PeDtP−1

=

[
−1 1
1 1

] [
e3t 0
0 e5t

]
1

2

[
−1 1
1 1

]
=

1

2

[
e3t + e5t −e3t + e5t

−e3t + e5t e3t + e5t

]
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The columns of eAt are linearly independent solutions of the system. We deduce that
all solutions of the system are:

x = c1

[
e3t + e5t

−e3t + e5t

]
+ c2

[
−e3t + e5t

e3t + e5t

]
(forgetting the 1/2’s was not a big sin, since they can be swallowed in the constants
c1 and c2.)

3. Jordan form: Suppose now that the n × n matrix A does not have n linearly
independent eigenvectors. Therefore this case will cover all the remaining possibili-
ties. We then say that the matrix A is not diagonalizable, since it will be impossible
to write A in the form PDP−1 for a diagonal matrix D. It is natural to look for the
“next best” alternative to being diagonalizable.

Definition 2.1 A matrix Ji is said to be a Jordan block if it has the following
form

Ji =


λi 1 0 . . . 0
0 λi 1 . . . 0
. . . . . . . . .
0 . . . 0 λi 1
0 . . . 0 λi


for some value of λi (here, the diagonal entries are all equal to the same number λi,
entries immediately above the diagonal are 1, all other entries are 0). A matrix J
is said to be in Jordan form if it can be written in the block form

J =


J1 0 . . . 0
0 J2 0 . . .
. . . . . .
0 . . . 0 Jk


where J1, . . . , Jk are Jordan blocks of various sizes and 0’s denote zero matrices of
appropriate sizes.

The following theorem is a classical result in linear algebra whose proof is beyond
the scope of this course 1:

1Interested readers can check my linear algebra (Math 262) notes at
http://math.metu.edu.tr/en/undergraduate-courses-2019-2 for a lengthy but full account
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Theorem 2.1 For every n×n matrix A there exists an invertible matrix P (possibly
with complex entries) such that P−1AP is in Jordan form.

Assuming the existence of the matrix in Jordan form guaranteed by the theorem
above, we will concentrate on how one can find J and P for a given matrix A. Let
us first think about a single Jordan block in relation to the vectors first. Suppose
that

J =


λ 1 0 . . . 0
0 λ 1 . . . 0
. . . . . . . . .
0 . . . 0 λ 1
0 . . . 0 λ


is a Jordan block and P =

[
v(1) | v(2) | . . . | v(n)

]
. Then the equation AP =

PJ can also be written as follows:

A
[
v(1) | . . . | v(n)

]
=
[
v(1) | . . . | v(n)

]

λ 1 0 . . . 0
0 λ 1 . . . 0
. . . . . . . . .
0 . . . 0 λ 1
0 . . . 0 λ


=

[
λv(1) | v(1) + λv(2) | v(2) + λv(3) | . . . | v(n−1) + λv(n)

]
Therefore the column vectors of P must obey the equations

Av(1) = λv(1)

Av(2) = v(1) + λv(2)

. . .

Av(n) = v(n−1) + λv(n)

or equivalently

(A− λI)v(1) = 0

(A− λI)v(2) = v(1)

(A− λI)v(3) = v(2)

. . .

(A− λI)v(n) = v(n−1)
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This tells us that v(1) is an honest eigenvector but the other columns are not eigen-
vectors. They satisfy equations similar to the eigenvector equation. They are some-
times called generalized eigenvectors. Also note that (A−λI)kv(k) = 0, therefore
these vectors are “killed” by higher and higher powers of the matrix A− λI.

Therefore, if we somehow knew that the Jordan form of A has a single Jordan block,
the strategy to find it would be clear: Find v(1) using the eigenvector equation. Then
subsequently solve for v(2),v(3), . . . ,v(n) using the remaining equations.

Example 2.2 Find the Jordan form of the matrix A =

 1 1 1
2 1 −1
−3 2 4

. Write A =

PJP−1.

Solution:

det(A− λI) =

∣∣∣∣∣∣
1− λ 1 1

2 1− λ −1
−3 2 4− λ

∣∣∣∣∣∣
= (1− λ)

∣∣∣∣1− λ −1
2 4− λ

∣∣∣∣− 1

∣∣∣∣ 2 −1
−3 4− λ

∣∣∣∣+ 1

∣∣∣∣ 2 1− λ
−3 2

∣∣∣∣
= (1− λ)(λ2 − 5λ+ 6)− (5− 2λ) + (7− 3λ)

= −λ3 + 6λ2 − 12λ+ 8

= (2− λ)3

therefore the only eigenvalue is λ = 2. Let us find the eigenvectors:−1 1 1 | 0
2 −1 −1 | 0
−3 2 2 | 0

−R1 → R1−−−−−−−→

 1 −1 −1 | 0
2 −1 −1 | 0
−3 2 2 | 0


−2R1 +R2 → R2, 3R1 +R3 → R3−−−−−−−−−−−−−−−−−−−−−−−−−→

1 −1 −1 | 0
0 1 1 | 0
0 −1 −1 | 0


R2 +R3 → R3−−−−−−−−−−→

1 −1 −1 | 0
0 1 1 | 0
0 0 0 | 0


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Therefore the eigenvectors are

v = k

 0
−1
1


We can only pick one independent eigenvector. Each Jordan block in the Jordan
form would give us one independent eigenvector, therefore there must be only one
Jordan block in this example. Therefore

J =

2 1 0
0 2 1
0 0 2



Set v(1) =

 0
−1
1

. Solve for v(2) using (A− 2I)v(2) = v(1):

−1 1 1 | 0
2 −1 −1 | −1
−3 2 2 | 1

−R1 → R1−−−−−−−→

 1 −1 −1 | 0
2 −1 −1 | −1
−3 2 2 | 1


−2R1 +R2 → R2, 3R1 +R3 → R3−−−−−−−−−−−−−−−−−−−−−−−−−→

1 −1 −1 | 0
0 1 1 | −1
0 −1 −1 | 1


R2 +R3 → R3−−−−−−−−−−→

1 −1 −1 | 0
0 1 1 | −1
0 0 0 | 0



Therefore the solutions are of the form

 −1
−1− k
k

. We are free to choose v(2) as any

member of this set. For instance, choose v(2) =

−1
−1
0

. Next, solve for v(3) using

9



(A− 2I)v(3) = v(2):−1 1 1 | −1
2 −1 −1 | −1
−3 2 2 | 0

−R1 → R1−−−−−−−→

 1 −1 −1 | 1
2 −1 −1 | −1
−3 2 2 | 0


−2R1 +R2 → R2, 3R1 +R3 → R3−−−−−−−−−−−−−−−−−−−−−−−−−→

1 −1 −1 | 1
0 1 1 | −3
0 −1 −1 | 3


R2 +R3 → R3−−−−−−−−−−→

1 −1 −1 | 1
0 1 1 | −3
0 0 0 | 0



The solutions are

 −2
−3− k
k

. Again, we are free to make a choice here, pick for

instance v(3) =

−2
−3
0

. Therefore for the matrix

P =

 0 −1 −2
−1 −1 −3
1 0 0


and for the Jordan matrix J above we will have A = PJP−1.

3 Exponentiating a matrix in Jordan form

Suppose now that A = PJP−1 where J is a matrix in Jordan form. Just like in the
diagonalizable case, we can use this equality in order to compute eAt. First of all,
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we have:

eAt =
∞∑
k=0

(At)k

k!

=
∞∑
k=0

(PJP−1t)k

k!

=
∞∑
k=0

P (Jt)kP−1

k!

= PeJtP−1.

So, it will be enough to determine eJt. It is enough to consider the case where J is
a single Jordan block, since different Jordan blocks will not interact with each other
in matrix exponentiation.

Theorem 3.1 If J =


λ 1 0 . . . 0
0 λ 1 . . . 0
. . . . . . . . .
0 . . . 0 λ 1
0 . . . . . . 0 λ

 is an n× n Jordan block then

eJt = eλt


1 t t2

2!
. . . tn−1

(n−1)!
0 1 t . . . tn−2

(n−2)!
. . . . . . . . .
0 . . . 0 1 t
0 . . . . . . 0 1


Proof: (This proof could be skipped at the first reading. Using the statement correctly
will be essential for what follows, however.) Let us first compute powers of J . We
assert that

Jk =


λk

(
k
1

)
λk−1

(
k
2

)
λk−2 . . .

(
k

n−1

)
λk−n+1

0 λk
(
k
1

)
λk−1

(
k
2

)
λk−2 . . .

. . . . . . . . .

0 . . . 0 λk
(
k
1

)
λk−1

0 0 . . . 0 λk


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where

(
k

i

)
=

k!

(k − i)!i!
is the binomial coefficient (k, i) 2. This can be proven by

induction using the identity

(
k

i− 1

)
+

(
k

i

)
=

(
k + 1

i

)
. The ij-entry of such a

matrix depends only on j− i hence it is enough to look at the first row. The 1j-entry

of eJt =
∞∑
n=0

(Jt)k

k!
is

∞∑
k=0

(
k

j − 1

)
λk+1−jtk

k!
=

tj−1

(j − 1)!

∞∑
k=0

λk+1−jtk+1−j

(k + 1− j)!
=

tj−1

(j − 1)!
eλt

and this proves the claim. �

Summarizing, provided that we can find the Jordan form of the matrix A, we can use
the formulas above in order to compute eAt = PeJtP−1. In particular, the columns
of eAt will give us n linearly independent solutions of x′ = Ax. Linear combinations
of these columns can be written as eAtc where c is a column vector of constants.

There is a slightly more economical way to find the solutions of the system of dif-
ferential equations: eAtc = PeJtP−1c. Since P−1 will be a constant matrix, we can
rename P−1c as c. Then the solution takes the form Ψ(t)c where Ψ(t) = PeJt.
Then we do not have to go through the extra computation for finding P−1.

Example 3.1 Solve the homogenous system

x′ =

 1 1 1
2 1 −1
−3 2 4

x

Solution: The coefficient matrix A above is the same as the one in an example
from the previous lecture. There we found A = PJP−1 namely

A = P

2 1 0
0 2 1
0 0 2

P−1
2For k < n we assume that

(
k
n

)
= 0
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where P =

 0 −1 −2
−1 −1 −3
1 0 0

. Therefore,

x = Ψ(t)c = PeJt

=

 0 −1 −2
−1 −1 −3
1 0 0

 e2t
1 t t2/2

0 1 t
0 0 1

 c

= e2t

 0 −1 −t− 2
−1 −t− 1 −t2/2− t− 3
1 t t2/2

c1c2
c3


= c1

 0
−e2t
e2t

+ c2

 −e2t
(−t− 1)e2t

te2t

+ c3

 (−t− 2)e2t

(−t2/2− t− 3)e2t

t2e2t/2


where c1, c2, c3 are arbitrary real numbers.

Example 3.2 Solve the system

x′ =

 7 0 1
0 6 0
−1 0 5

x

Solution:

det(A− λI) =

∣∣∣∣∣∣
7− λ 0 1

0 6− λ 0
−1 0 5− λ

∣∣∣∣∣∣
= (6− λ)3

Therefore the only eigenvalue is λ = 6. Let us find the eigenvectors. 1 0 1 | 0
0 0 0 | 0
−1 0 −1 | 0

R1 +R3 → R3−−−−−−−−−−→

1 0 1 | 0
0 0 0 | 0
0 0 0 | 0


There is only a single leading 1, hence there are two free variables. This implies
that we can choose two independent eigenvectors v(1),v(2). Hence there will be one
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generalized eigenvector v(3) with (A − 6I)v(3) = v(2) and the Jordan form has two
blocks:

J =

6 0 0
0 6 1
0 0 6


How can we find v(1),v(2),v(3)? It might be tricky to start from the eigenvectors,
since it is unclear which eigenvector v(2) will lead to a generalized eigenvector v(3).
Instead, start by choosing v(3). It can be taken to be any vector such that

(A− 6I)2v(3) = 0, (A− 6I)v(3) 6= 0

(the second inequality guarantees that v(2) is nontrivial). In this example (A−6I)2 =
0, therefore the first condition is void. We can just choose any vector which is not
an eigenvector. For instance, let us choose

v(3) =

0
0
1

 .

Then v(2) = (A− 6I)v(3) =

 1
0
−1

. Finally, v(1) should be any eigenvector which is

independent of v(2), for instance v(1) =

0
1
0

. We found

P =

0 1 0
1 0 0
0 −1 1


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Now, we can find the solutions of the system:

x = Ψ(t)c = PeJtc

= e6t

0 1 0
1 0 0
0 −1 1

1 0 0
0 1 t
0 0 1

 c

= e6t

0 1 t
1 0 0
0 −1 −t+ 1

c1c2
c3


= c1

 0
e6t

0

+ c2

 e6t

0
−e6t

+ c3

 te6t

0
(−t+ 1)e6t


where c1, c2, c3 are arbitrary real numbers.
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