
MATH 219
Fall 2020

Lecture 20

Lecture notes by Özgür Kişisel

Content: Series Solutions Near A Regular Singular Point

Suggested Problems: (Boyce, Di Prima, 9th edition)

§5.5: 4,10,11,12,13

Suppose that x0 is a regular singular point for the equation

p(x)y′′ + q(x)y′ + r(x)y = 0 (∗)

Also, suppose that

lim
x→x0

(x− x0)q(x)

p(x)
= α, lim

x→x0

(x− x0)2r(x)

p(x)
= β.

Then we regard the Cauchy-Euler equation

(x− x0)2y′′ + α(x− x0)y′ + βy = 0 (∗∗)

as being “close” to the equation (∗) in the sense that the first Taylor series terms of
the coefficients of the two ODE’s agree. We saw before how one can solve Cauchy-
Euler equations. A reasonable guess is that if we perturb a solution of the Cauchy-
Euler equation (∗∗) by multiplying it with an appropriate power series, then we can
obtain a solution for (∗). This strategy turns out to be reasonably succesful, as
detailed below:

Strategy for solving an ODE near a regular singular point

� Check that x0 is a regular singular point and find the limits α, β above.

� Find the roots r1, r2 of the indicial equation r2 + (α − 1)r + β = 0. We will
assume that the roots are real for the sake of simplicity, but the complex case
is also manageable.
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� Say r1 ≥ r2. If r1 − r2 is not an integer, then one can obtain two linearly
independent power series solutions for (*)

y1 = |x− x0|r1
∞∑
n=0

an(x− x0)n, y2 = |x− x0|r2
∞∑
n=0

bn(x− x0)n

� If r1 − r2 is an integer, then a solution y1 as above still exists, but y2 above
need not exist. Instead, usually one will need to have a logarithmic term in
the second solution (we will not cover the details for such a second solution
here).

� In the solutions above, the coefficients a0 and b0 will be free, so they can be
taken to be 1 without loss of generality.

Example 0.1 Solve the equation 2x2y′′+ 3xy′+ (2x2− 1)y = 0, centered at x0 = 0.

Solution: The function 3x/2x2 is not analytic at 0, therefore x0 = 0 is not an
ordinary point. The functions x · 3x/2x2 and x2 · (2x2 − 1)/2x2 are both analytic
near 0, so the singularity is regular. The limits of the two functions are α = 3/2
and β = −1/2 respectively.

The indicial equation is

r2 +
1

2
r − 1

2
= 0

The two roots of this equation are r1 = 1
2

and r2 = −1. Their difference is not an
integer, so we should have two linearly independent solutions of the form

y1 = |x|
1
2

∞∑
n=0

anx
n, y2 = |x|−1

∞∑
n=0

bnx
n

Let us assume from now on that x > 0, so that we can remove the absolute values.
The case x < 0 is similar.

y1 =
∞∑
n=0

anx
n+ 1

2

y′1 =
∞∑
n=0

(n+
1

2
)anx

n− 1
2

y′′1 =
∞∑
n=0

(n+
1

2
)(n− 1

2
)anx

n− 3
2
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Notice that the initial terms in the sums are non-constant, hence they should be still
kept after taking derivatives. Putting these terms in the ODE, we get

2x2
∞∑
n=0

(n+
1

2
)(n− 1

2
)anx

n− 3
2 + 3x

∞∑
n=0

(n+
1

2
)anx

n− 1
2 + (2x2 − 1)

∞∑
n=0

anx
n+ 1

2 = 0

∞∑
n=0

2(n+
1

2
)(n− 1

2
)anx

n+ 1
2 +

∞∑
n=0

3(n+
1

2
)anx

n+ 1
2 +

∞∑
n=0

2anx
n+ 5

2 −
∞∑
n=0

anx
n+ 1

2 = 0

∞∑
n=0

2(n+
1

2
)(n− 1

2
)anx

n+ 1
2 +

∞∑
n=0

3(n+
1

2
)anx

n+ 1
2 +

∞∑
n=2

2an−2x
n+ 1

2 −
∞∑
n=0

anx
n+ 1

2 = 0

(2 · 1

2
· (−1

2
) · a0 + 3 · 1

2
· a0 − a0)x

1
2 + (2 · 3

2
· 1

2
a1 + 3 · 3

2
a1 − a1)x

3
2 +

∞∑
n=2

[2(n+
1

2
)(n− 1

2
)an + 3(n+

1

2
)an + 2an−2 − an]xn+

1
2 = 0

We now equate the coefficient of each power of x in the above expression to 0. First
of all, the coefficient of x

1
2 is 0, therefore a0 is free. Next, the coefficient of x

3
2 shows

a1 = 0. The coefficient in the final summand gives, for n ≥ 2,

(2n2 + 3n)an + 2an−2 = 0.

Therefore, we obtain the recursion relation

an = − 2

2n2 + 3n
an−2.

We immediately get a1 = a3 = a5 = . . . = 0. The first few of the even indexed terms
are

a2 = −a0
7
, a4 = −a2

22
=

a0
154

, a6 = − 1

45
a4 = − a0

6930

Taking a0 = 1, we get

y1 = x
1
2

(
1− x2

7
+

x4

154
− x6

6930
+ . . .

)
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We will now carry out the same steps for the second solution y2:

y2 =
∞∑
n=0

bnx
n−1

y′2 =
∞∑
n=0

(n− 1)bnx
n−2

y′′2 =
∞∑
n=0

(n− 1)(n− 2)bnx
n−3

Put these terms in the ODE:

2x2
∞∑
n=0

(n− 1)(n− 2)bnx
n−3 + 3x

∞∑
n=0

(n− 1)bnx
n−2 + (2x2 − 1)

∞∑
n=0

bnx
n−1 = 0

∞∑
n=0

2(n− 1)(n− 2)bnx
n−1 +

∞∑
n=0

3(n− 1)bnx
n−1 +

∞∑
n=0

2bnx
n+1 −

∞∑
n=0

bnx
n−1 = 0

∞∑
n=0

2(n− 1)(n− 2)bnx
n−1 +

∞∑
n=0

3(n− 1)bnx
n−1 +

∞∑
n=2

2bn−2x
n−1 −

∞∑
n=0

bnx
n−1 = 0

(2 · (−1) · (−2)b0 + 3 · (−1)b0 − b0)x−1 + (2 · 0 · (−1)b1 + 3 · 0 · b1 − b1)x0 +
∞∑
n=2

[2(n− 1)(n− 2)bn + 3(n− 1)bn + 2bn−2 − bn]xn−1 = 0

Again, equate all coefficients of powers of x in the above expression to 0. We see
that b0 is free and b1 = 0. The coefficient in the last summand gives, for n ≥ 2,

(2n2 − 3n)bn + 2bn−2 = 0.

Therefore, the recursion relation is

bn = − 2

2n2 − 3n
bn−2.

We get b1 = b3 = b5 = . . . = 0. The first few even indexed terms are:

b2 = −b0, b4 = − b2
10

=
b0
10
, b6 = − b4

27
= − b0

270
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Taking b0 = 1, we get

y2 = x−1
(

1− x2 +
x4

10
− x6

270
+ . . .

)
Finally, the general solution is

y = c1y1 + c2y2

where c1, c2 are arbitrary constants and y1, y2 are as above.
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