MATH 219
Fall 2020
Lecture 20

Lecture notes by Ozgiir Kisisel

Content: Series Solutions Near A Regular Singular Point
Suggested Problems: (Boyce, Di Prima, 9th edition)
§5.5: 4,10,11,12,13

Suppose that xg is a regular singular point for the equation
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Then we regard the Cauchy-Euler equation
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as being “close” to the equation (x) in the sense that the first Taylor series terms of
the coefficients of the two ODE’s agree. We saw before how one can solve Cauchy-
Euler equations. A reasonable guess is that if we perturb a solution of the Cauchy-
Euler equation (#x*) by multiplying it with an appropriate power series, then we can
obtain a solution for (). This strategy turns out to be reasonably succesful, as
detailed below:

Strategy for solving an ODE near a regular singular point

e Check that xg is a regular singular point and find the limits «, 5 above.

e Find the roots 71,7y of the indicial equation 7? + (o — 1)r + 8 = 0. We will
assume that the roots are real for the sake of simplicity, but the complex case
is also manageable.



e Say r; > ro. If r; — 79 is not an integer, then one can obtain two linearly
independent power series solutions for (*)
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e If r{ — ry is an integer, then a solution y; as above still exists, but y, above
need not exist. Instead, usually one will need to have a logarithmic term in

the second solution (we will not cover the details for such a second solution
here).

e In the solutions above, the coefficients ag and by will be free, so they can be
taken to be 1 without loss of generality.

Example 0.1 Solve the equation 2x%y" + 3xy’ + (222 — 1)y = 0, centered at xy = 0.

Solution: The function 3z/2x* is not analytic at 0, therefore o = 0 is not an
ordinary point. The functions x - 3x/2x* and z* - (22* — 1)/22* are both analytic
near 0, so the singularity is reqular. The limits of the two functions are o = 3/2
and = —1/2 respectively.

The indicial equation s
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The two roots of this equation are ry = % and ro = —1. Their difference is not an

integer, so we should have two linearly independent solutions of the form
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Let us assume from now on that x > 0, so that we can remove the absolute values.
The case x < 0 is similar.
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Notice that the initial terms in the sums are non-constant, hence they should be still
kept after taking derivatives. Putting these terms in the ODE, we get
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We now equate the coefficient of each power of x in the above expression to 0. First
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of all, the coefficient of x2 is 0, therefore ag is free. Next, the coefficient of x2 shows

ay = 0. The coefficient in the final summand gives, for n > 2,

(2n% + 3n)a, + 2a,_5 = 0.

Therefore, we obtain the recursion relation
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We immediately get a1 = a3 = a5 = ... = 0. The first few of the even indezxed terms
are
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Taking ag = 1, we get
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We will now carry out the same steps for the second solution ys:
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Put these terms in the ODE:
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Again, equate all coefficients of powers of x in the above expression to 0. We see
that by is free and by = 0. The coefficient in the last summand gives, for n > 2,

(2n® — 3n)b, + 2b, 5 = 0.

Therefore, the recursion relation is

We get by = b3 =bs = ... = 0. The first few even indexed terms are:
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Taking by = 1, we get

Finally, the general solution is

Y = C1y1 + Yo

where ¢y, co are arbitrary constants and y1,ys are as above.



