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Lecture 25

Lecture notes by Özgür Kişisel

Content: Heat Equation: Separation of Variables

Suggested Problems: (Boyce, Di Prima, 9th edition)

§10.1 : 2, 5, 6, 11, 13, 14, 15, 16, 20

In the last three lectures of the course, we will use some of the previously developed
techniques together with some new ones in order to solve a certain partial differen-
tial equation. This will only be a first introduction to the vast subject of partial
differential equations.

1 Heat Conduction on a Rod

Suppose that we have a uniform rod of length L, with an ignorable thickness. We
will assume that there is an initial temperature distribution on the rod which evolves
in time. We would like to understand how exactly it evolves. Let us place an axis
labeled by the variable x, parallel to the rod and assume that the rod is placed
between x = 0 and x = L. Let u(x, t) denote the temperature of point x at time t.
We will assume that u(0, t) = u(L, t) = 0 for all t. In other words, the two ends are
kept at the constant temperature 0. Heat can escape or enter from the ends, but
not through the lateral surface.

In order to proceed mathematically, we need a differential equation which models
how the temperature at each point changes with time. This is governed by the heat
equation:

ut = α2uxx,

where α is a constant that depends on the material that the rod is made up of.

Here is a partial justification of why heat equation holds: Ignoring the boundary
conditions for now, at an equilibrium we expect the temperature of each point to
be equal to the average temperature of the points neighboring it. In 1 dimension,
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the only functions that satisfy this property at each point are linear functions. If
uxx > 0 at some point p, then the graph of u with respect to x is concave up at p and
the temperature at p is less than the average of the temperatures of its neighboring
points. Therefore, the temperature of the point p will increase (ut > 0) which is
in accordance with the equation. Likewise, if uxx < 0 at p, then the graph of u
with respect to x is concave down at p and the temperature at p is greater than the
average temperature in its neighborhood. In this case u(p) should decrease, namely
ut(p) < 0. This partially justifies the heat equation by showing that ut and uxx
must have the same sign for physical reasons. The heat equation says something
stronger; it says that ut is directly proportional to uxx. Alternatively one could view
this equation as the linear approximation to a more complicated setup; the simplest
possibility where ut and uxx have the same sign.

Our mathematical problem then is to solve the PDE

ut = α2uxx

subject to the boundary conditions

u(0, t) = u(L, t) = 0

and an initial condition
u(x, 0) = f(x).

The domain of u(x, t) is the subset 0 ≤ x ≤ L, t ≥ 0 of R2 which has the shape of
an infinite rectangular strip. On the other hand, if we wish to graph the solution
u(x, t), we need one more dimension to place it. So the graph of u(x, t) will be a
surface in R3 over the rectangular strip; the boundary conditions and the initial
condition tell us what happens on the boundary of this surface.

2 Strategy for Solving the Problem

We break the problem into two major steps:

1. Find as many solutions of the problem

ut = α2uxx, u(0, t) = 0, u(L, t) = 0

as possible. (The condition u(x, 0) = f(x) is forgotten at this step.)
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2. Among these solutions, find one that satisfies u(x, 0) = f(x).

The first part is about separation of variables and solving the resulting boundary
problem. The second part is about finding a Fourier series expansion. We will
discuss all of these one by one now.

3 Separation of Variables

Let us look for solutions of the problem

ut = α2uxx, u(0, t) = 0, u(L, t) = 0

of the form
u(x, t) = X(x)T (t),

namely in the product form of a function of x and a function of t. It might be unclear
whether or not the problem has any interesting solutions of this form at all. There
is the trivial solution 0, but it is unclear whether there are any nontrivial solutions
or not. At the end of our analysis, we will see that there are many. Rewriting the
PDE in terms of these functions, we have

X(x)T ′(t) = α2X ′′(x)T (t)

T ′(t)

α2T (t)
=

X ′′(x)

X(x)
.

The left hand side of the last equation depends only on t. The right hand side
depends only on x. But they are equal, so this quantity must be independent of
both x and t. Since we have only two independent variables, this quantity must be
a constant.

T ′(t)

α2T (t)
=
X ′′(x)

X(x)
= −λ.

This gives us two ordinary differential equations

T ′(t) + λα2T (t) = 0

X ′′(x) + λX(x) = 0.

In addition, we have

u(0, t) = X(0)T (t) = 0

u(L, t) = X(L)T (t) = 0.
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Then, either T (t) = 0 for all t, or X(0) = X(L) = 0. The first of these would imply
that u(x, t) = X(x)T (t) = 0, so we would have a trivial solution. Therefore we
assume from now on that X(0) = X(L) = 0. Together with the ODE for X(x), we
have the following boundary value problem:

X ′′(x) + λX(x) = 0, X(0) = X(L) = 0.

The characteristic equation for the ODE is r2 + λ = 0. Depending on the sign of λ,
we have three possibilities:

(i) λ < 0: Set λ = −k2 for convenience. Then, r1,2 = ±k are two distinct, real
roots.

X(x) = c1e
kx + c2e

−kx.

The two boundary conditions give us

X(0) = c1 + c2 = 0

X(L) = c1e
kL + c2e

−kL = 0.

In matrix form, these equations can be written as[
1 1
ekL e−kL

] [
c1
c2

]
=

[
0
0

]
.

This linear system has a nontrivial solution if and only if the determinant of the
coefficient matrix A is zero. However,

det(A) = e−kL − ekL 6= 0.

Therefore, no nontrivial solutions arise from this case.

(ii)λ = 0: In this case, r1 = r2 = 0. Therefore,

X(x) = c1 + c2x.

Plugging in the boundary conditions, we get

X(0) = c1 = 0, X(L) = c1 + c2L = 0

from which we easily get c1 = c2 = 0. Again, no nontrivial solutions arise from this
case.
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(iii) λ > 0 Set λ = k2. Then, r1,2 = ±ik are two complex conjugate roots. Therefore,

X(x) = c1 cos(kx) + c2 sin(kx).

The boundary conditions give

X(0) = c1 = 0

X(L) = c1 cos(kL) + c2 sin(kL) = 0.

Write these equations in matrix form:[
1 0

cos(kL) sin(kL)

] [
c1
c2

]
=

[
0
0.

]
Again, let A be the coefficient matrix. The system has nontrivial solutions if and
only if the following equivalent conditions hold:

det(A) = 0 ⇔ sin(kL) = 0

⇔ kL = nπ, n ∈ Z
⇔ k =

nπ

L
, n ∈ Z

⇔ λ =
n2π2

L2
n ∈ Z.

For each such value of λ, the nontrivial solutions that we get are constant multiples
of

Xn(x) = sin
(nπx
L

)
.

It is enough to take n ∈ {1, 2, 3, . . .} since n = 0 gives a trivial solution and −n
gives the negative of the solution for n.

Next, let us solve the ODE for T (t) for the special values of λ = n2π2/L2 discovered
above.

T ′(t) +
n2π2α2

L2
T (t) = 0.

Select a solution,
Tn(t) = e−n

2π2α2t/L2

.

Set un(x, t) = Xn(x)Tn(t). Now, we have one solution of the original problem in
step 1 for each n = 1, 2, 3, . . .

un(x, t) = e−n
2π2α2t/L2

sin
(nπx
L

)
.
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4 Superposition

In the previous section, we produced infinitely many solutions to the problem

ut = α2uxx, u(0, t) = u(L, t) = 0.

We can still produce more solutions by using the principle of superposition: If u and
v satisfy all three conditions above, then it is easy to check that c1u + c2v satisfies
the same conditions for any choice of constants c1, c2. We can also try to use the
same principle for an infinite linear combination of the form

u(x, t) =
∞∑
n=1

cnun(x, t)

=
∞∑
n=1

cne
−n2π2α2t/L2

sin
(nπx
L

)
.

Everything works out fine, except that there is a convergence issue. An infinite
series may converge or diverge, depending on how fast the coefficients cn grow with
n. But this is what happens for a general series. In our special case, the negative
exponentials in the sum decay very rapidly to 0. So if the coefficients cn do not
grow very quickly with n (like exp(n2) or faster), then the sum converges and the
principle of superposition holds. This gives us a very large family of solutions to the
problem in step 1.

6


