
MATH 219
Fall 2020

Lecture 26

Lecture notes by Özgür Kişisel

Content: Fourier Series

Suggested Problems: (Boyce, Di Prima, 9th edition)

§10.2 : 1, 2, 4, 8, 9, 10, 17, 18, 21, 22, 27, 28

§10.3 : 1, 3, 5, 6

§10.4 : 7, 8, 11, 12, 17, 18, 19, 24, 26

In the previous lecture, we found a large family of solutions for the problem

ut = α2uxx, u(0, t) = u(L, t) = 0.

This family of solutions was

u(x, t) =
∞∑
n=1

cne
−n2π2α2t/L2

sin
(nπx
L

)
.

Here, the constants cn can be arbitrary, except they should not grow extremely
rapidly with n so as to make the series diverge for any value of t. However, since we
have a term decaying like exp(−n2) in the formula, many plausible choices for cn’s
work.

In order to finish the heat equation problem, we need to select the constants cn so
that for 0 < x < L, the equality f(x) = u(x, 0) holds. If we put t = 0 in the formula
above, this says that

f(x) =
∞∑
n=1

cn sin
(nπx
L

)
.

In plain language, we would like to express an arbitrarily given function f(x) as an
infinite linear combination of certain trigonometric functions. Although this looks
like an ambitious statement, it turns out to be correct under mild assumptions on
f(x).
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1 Periodic Functions

Recall that a real valued function f(x) is called periodic with period T , if for all
x ∈ R we have

f(x+ T ) = f(x).

We remark that if T is a period for f(x), then so is any integer multiple nT of T .
The primary examples of functions with period T = 2L are

sin
(nπx
L

)
, cos

(nπx
L

)
The question of interest for us is whether or not an arbitrarily given periodic function
f(x) can be expressed as an infinite linear combination of these functions? The
answer is given by the following important theorem of Fourier:

Theorem 1.1 (Fourier convergence theorem) Suppose that f(x) is a piecewise con-
tinuous periodic function of period T = 2L. Then, there exist unique sets of con-
stants a0, a1, a2, . . . and b1, b2, . . . such that

f(x) =
a0
2

+
∞∑
n=1

an cos
(nπx
L

)
+
∞∑
n=1

bn sin
(nπx
L

)
for every value of x for which f is continuous. At the points of discontinuity, the
right hand side of the equation converges to

f(x−) + f(x+)

2

where f(x−) = limz→x− f(z) and f(x+) = limz→x+ f(z).

The proof of this theorem will be omitted. However, assuming that the theorem
holds, we will see soon how we can find the coefficients an and bn when f(x) is
given.

2 Orthogonality Relations

Definition 2.1 Let f(x) and g(x) be two piecewise continuous functions, both pe-
riodic with the same period T = 2L. Their integral inner product is

〈f(x), g(x)〉 =

∫ L

−L
f(x)g(x)dx.
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By periodicity, the integral in the definition could be taken over any period (for
instance, from 0 to 2L).

The integral inner product defined above shares many common properties with the
dot product of vectors. For instance,

� 〈f, g〉 = 〈g, f〉,

� 〈f1 + f2, g〉 = 〈f1, g〉+ 〈f2, g〉,

� 〈cf, g〉 = c 〈f, g〉 , c ∈ R.

We would like to compute the inner products of functions of the form sin(nπx/L)
and cos(nπx/L) first, where n takes integer values. For these computations, the
following trigonometric identities will be useful:

sin(a) sin(b) =
1

2
(cos(a− b)− cos(a+ b)),

cos(a) cos(b) =
1

2
(cos(a− b) + cos(a+ b)),

sin(a) cos(b) =
1

2
(sin(a+ b) + sin(a− b)).

Another useful observation is the following: If we integrate a sine or cosine function
over one of its periods, then we get 0 by symmetry. Now:〈

sin
(nπx
L

)
, sin

(mπx
L

)〉
=

∫ L

−L
sin
(nπx
L

)
sin
(mπx

L

)
dx

=
1

2

∫ L

−L
cos

(
(n−m)πx

L

)
dx− 1

2

∫ L

−L
cos

(
(n+m)πx

L

)
dx

Here, n,m ∈ {1, 2, 3, . . .}. The first integral is 0 if n 6= m and L if n = m. The
second integral is always 0. Therefore,〈

sin
(nπx
L

)
, sin

(mπx
L

)〉
=

{
0, n 6= m,

L, n = m.

We make a similar computation for two cosine functions:〈
cos
(nπx
L

)
, cos

(mπx
L

)〉
=

∫ L

−L
cos
(nπx
L

)
cos
(mπx

L

)
dx

=
1

2

∫ L

−L
cos

(
(n−m)πx

L

)
dx+

1

2

∫ L

−L
cos

(
(n+m)πx

L

)
dx
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This time, since cos(0) 6= 0, we take n,m ∈ {0, 1, 2, . . .}. The first integral is 0 if
n 6= m and L if n = m. The second integral is L if n = m = 0 and 0 in all other
cases. Therefore,

〈
cos
(nπx
L

)
, cos

(mπx
L

)〉
=


0, n 6= m,

L, n = m 6= 0

2L, n = m = 0.

Finally, we compute the inner product of a sine and a cosine function:〈
sin
(nπx
L

)
, cos

(mπx
L

)〉
=

∫ L

−L
sin
(nπx
L

)
cos
(mπx

L

)
dx

=
1

2

∫ L

−L
sin

(
(n+m)πx

L

)
dx+

1

2

∫ L

−L
sin

(
(n−m)πx

L

)
dx

This time, both integrals are 0 regardless of the values of n and m. Therefore,〈
sin
(nπx
L

)
, cos

(mπx
L

)〉
= 0.

These equalities are called orthogonality relations. There is a geometric reason
behind this: The inner product is similar to the dot product of vectors. Recall that
the dot product of two vectors is 0 if and only if the vectors are orthogonal. So,
the sine and cosine functions described above are orthogonal to one another in some
abstract sense.

3 Fourier Inversion Formula

Suppose now that f(x) is a piecewise continuous function with period T = 2L and
its Fourier series is

a0
2

+
∞∑
n=1

an cos
(nπx
L

)
+
∞∑
n=1

bn sin
(nπx
L

)
.

Fourier’s convergence theorem guarantees that f(x) is equal to the above series at
all points of continuity. By definition of piecewise continuous functions, the points
of discontinuity can at most be finitely many in every finite interval. Therefore, in
an integral formula, we can assume that f(x) is equal to its Fourier series, since
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differences in finitely many points will not change the value of the integral. So, in
the integral formula we will simply insert

f(x) =
a0
2

+
∞∑
n=1

an cos
(nπx
L

)
+
∞∑
n=1

bn sin
(nπx
L

)
.

Now, let us take the integral inner product of both sides of this equation with
cos(mπx/L):

〈
f(x), cos

(mπx
L

)〉
=

〈
a0
2

+
∞∑
n=1

an cos
(nπx
L

)
+
∞∑
n=1

bn sin
(nπx
L

)
, cos

(mπx
L

)〉

=
a0
2

〈
1, cos

(mπx
L

)〉
+
∞∑
n=1

〈
cos
(nπx
L

)
, cos

(mπx
L

)〉
+

∞∑
n=1

bn

〈
sin
(nπx
L

)
, cos

(mπx
L

)〉
= Lam.

(Using the distributive law for the infinite sum above requires some justification,
which we omit). This gives us a formula for am:

am =
1

L

〈
f(x), cos

(mπx
L

)〉
=

1

L

∫ L

−L
f(x) cos

(mπx
L

)
dx.

By a very similar argument, we get

bm =
1

L

〈
f(x), sin

(mπx
L

)〉
=

1

L

∫ L

−L
f(x) sin

(mπx
L

)
dx.

This gives us a feasible way to compute all Fourier coefficients.

Example: Suppose that f(x) = 1 for 0 < x < 2, f(x) = −1 for −2 < x < 0 and
f(x) is periodic with period 4. Let us find the Fourier coefficients of f(x). We take
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L = 2 (half of the period).

am =
1

2

∫ 2

−2
f(x) cos

(mπx
2

)
dx

=
1

2

∫ 0

−2
− cos

(mπx
2

)
dx+

1

2

∫ 2

0

cos
(mπx

2

)
dx

= 0.

The last equality holds because cos is an even function. Similarly, we compute bm’s:

bm =
1

2

∫ 2

−2
f(x) sin

(mπx
2

)
dx

=
1

2

∫ 0

−2
− sin

(mπx
2

)
dx+

1

2

∫ 2

0

sin
(mπx

2

)
dx

=

∫ 2

0

sin
(mπx

2

)
dx

= − 2

mπ
cos
(mπx

2

)∣∣∣∣2
0

= − 2

mπ
(cos(mπ)− 1)

=

{
4/mπ, m odd,

0, m even

Therefore, the Fourier series for f(x) is

4

π

(
sin(πx/2) +

1

3
sin(3πx/2) +

1

5
sin(5πx/2) + . . .

)
.
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