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THE THERMODYNAMICS OF THE REAL FLUIDS SELF STUDY 

MODULE 

Objective 

The objective of this module is to develop a basis for estimating properties of the real fluids, starting 

from our basis of the thermodynamics landscape. Upon successful completion of this module, the 

student should be able to estimate any thermodynamic state variable of any fluid, given basic 

information such as critical parameters.  

Reading assignment 

Read Chapter 6 Sandler’s Thermodynamics, 4th edition.  

Remember 

This section is borrowed from the self study module on the thermodynamic landscape, U, H, A, G.  

We will derive the energy introduced into a fluid confined in a piston and cylinder assembly by an 

impeller performing reversible shaft work, subject to different constraints.  We will start from the most 

general form of the Energy balance and the entropy balance to find the answers under different 

constraints.  

𝑑𝑈

𝑑𝑡
=  ∑ �̇�𝑖

𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠

�̂�𝑖 + �̇� + 𝑊𝑠
̇ − 𝑃

𝑑𝑉

𝑑𝑡
 

𝑑𝑆

𝑑𝑡
=  ∑ �̇�𝑖

𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠

�̂�𝑖 +
𝑄

𝑇

̇
+ �̇�𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 
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Case 1: The system is closed, the process is adiabatic and the system is at constant volume 

The energy balance simplifies to  

𝑑𝑈

𝑑𝑡
=  𝑊𝑠

̇  

The entropy balance indicates that  

𝑑𝑆

𝑑𝑡
= 0 

This result indicates that for a reversible and adiabatic process, entropy is constant. 

Case 2: The system is closed, the process is adiabatic and the system is at constant pressure 

The energy balance simplifies to  

𝑑𝑈

𝑑𝑡
= 𝑊𝑠

̇ − 𝑃
𝑑𝑉

𝑑𝑡
 

At constant pressure, it is possible to rearrange the expression as  

𝑑𝐻

𝑑𝑡
=  𝑊𝑠

̇  

Similar to case 1,   

𝑑𝑆

𝑑𝑡
= 0 

Case 3: The system is closed, the process is isothermal and the system is at constant volume 

The energy balance simplifies to  

𝑑𝑈

𝑑𝑡
=  �̇� + 𝑊𝑠

̇  
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While the entropy balance yields 

𝑑𝑆

𝑑𝑡
=  

𝑄

𝑇

̇
 or    �̇� = 𝑇

𝑑𝑆

𝑑𝑡
  when this expression for �̇� is substituted in the energy balance, 

keeping in mind that the temperature is constant, the rearrangement gives  

𝑑𝐴

𝑑𝑡
=  𝑊𝑠

̇  

Where A is the Helmholtz free energy defined by, A=U-TS 

It is important to note here that we derive this expression for any fluid.  The fact that at 

constant temperature U is also constant is valid only for the ideal gases, not for the real fluids.  

Therefore we keep U in our derivations.  

Case 4: The system is closed, the process is isothermal and the system is at constant pressure 

The energy balance simplifies to  

𝑑𝑈

𝑑𝑡
=  �̇� + 𝑊𝑠

̇ − 𝑃
𝑑𝑉

𝑑𝑡
 

While the entropy balance yields 

𝑑𝑆

𝑑𝑡
=  

𝑄

𝑇

̇
 or    �̇� = 𝑇

𝑑𝑆

𝑑𝑡
  when this expression for �̇� is substituted in the energy balance, 

keeping in mind that the temperature and pressure are constant, the rearrangement gives  

𝑑𝐺

𝑑𝑡
=  𝑊𝑠

̇  

Where A is the Helmholtz free energy defined by, G=U+PV-TS 

It is important to note here that we derive this expression for any fluid.  The fact that at 

constant temperature U is also constant is valid only for the ideal gases, not for the real fluids.  

Therefore, we keep U in our expressions.  
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Now lets combine all of the cases along with their constraints in the table below. Realize that your 

independent variables are S, T, P and V and your dependent variables are U, H, A and G.   

S and V constant 
𝑑𝑈

𝑑𝑡
=  𝑊𝑠

̇  

 

S and P constant 
𝑑𝐻

𝑑𝑡
=  𝑊𝑠

̇  

H=U+PV 

T and V constant 
𝑑𝐴

𝑑𝑡
=  𝑊𝑠

̇  

A=U-TS 

T and P constant 
𝑑𝐺

𝑑𝑡
=  𝑊𝑠

̇  

G=U+PV-TS 

Derive 

The analysis presented above gave us a perspective using Joule’s experiment as a  tool.  Joules 

experiment was a classic revealing the relationship between work and total energy.  We studied an ideal 

gas confined in a piston and cylinder assembly and realized that under different constraints, the amount 

of energy exchanged with the environment is different.  The special constraint pairs gave rise to new 

forms of energy as defined above.  We will use these energies and their relationships to generate a set 

of equations that will allow us to determine the real fluid properties.    

The internal energy 

We have already learned that the internal energy carries information about vibrational, rotational, 

and translational degrees of freedom of a molecule.  For the ideal gases, we also learned that the 

internal energy is only a function of temperature. 

𝑑𝑈

𝑑𝑇
= 𝑛 𝐶𝑣

∗   

In this module, we will ask the question of what happens if we do not have an ideal gas.  
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The assumptions of the ideal gas law 

The ideal gas law has the following assumptions: 

1. The volume occupied by the molecules, in comparison to the total volume, is negligible 

2. The molecules do not interact.  

Using this starting point, lord Kelvin discovered the absolute zero, by potting PV (a measure of 

energy) of a gas as a function of T.  This plot had to features.  The first feature of the plot, was that it 

was a straight line with a slope equal for all the gases investigated.  The slope is what we call R, the 

universal gas constant. Universal indicate that the constant is valid for all of the gases under the 

conditions that they behave ideally.  The second feature was the intercept of the Temperature axis.  

This temperature signified the condition where net energy is zero.   

The van der Waals Equation of State 

Let us now remove the assumptions of the ideal gas law one by one: 

1.  There is a finite volume that the molecules occupy. In fact, this is even more important when 

we move close to the liquid state.  Lets call this volume b, such that the volume of voids that is 

calculated by the ideal gas law becomes (𝑉 − 𝑏)   and the new equation of state is 𝑃(𝑉 − 𝑏) =

𝑅𝑇    

2. We will also remove the second assumption by adding a term that represent the molecular 

interactions.  For the discussion we will conduct here, the interaction parameter we chose will 

be  
𝑎

𝑉2, this parameter will correct the local pressures sensed by the molecules, for the attractive 

interactions.   

As a result, our new equation of state took the following form:  

 𝑃 =
𝑅𝑇

(𝑉−𝑏)
−

𝑎

𝑉2 
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This is the van der Waals equation of state.  It will be the basis of our discussions.  The van der Waals 

(vDW) equation of state (EOS) is a cubic polynomial in terms of 𝑉.  There is a group of equations of state 

called cubic equations due to the fact that in all of these equations, the highest power of 𝑉 is three, but 

the function does not have to be a polynomial. Now, in the Figure below, you see a plot of two 

isotherms emanating from VDW EOS.  One of the isotherms (orange colored) is at the critical 

temperature, and the other one (blue) is at a temperature lower than the critical temperature, such that 

the vapor and liquid coexistence can be experienced.    

The cubic equation of state exhibit three extrema:  a maximum, a minimum, and a saddle point at which 

the concave curve and convex curve meet.  These extrema are represented by the following 

mathematical equalities at the critical point.  

(
𝜕𝑃

𝜕𝑉
)

𝑇

= 0 = −
𝑅𝑇 

(𝑉 − 𝑏)
2 + 2

𝑎

𝑉3
 

(
𝜕2𝑃

𝜕𝑉2)
𝑇

=
2𝑅𝑇 

(𝑉 − 𝑏)
3 − 6

𝑎

𝑉4
= 0 

These two identities give us a set of equations that we can calculate and b  

𝑎 =
9𝑉𝑐𝑅𝑇𝑐

8
 

𝑏 =
𝑉𝑐

3
 

Substitute these values to vdW to obtain the critical pressure.  

𝑃𝑐 =
𝑎

27𝑏2
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As seen, there is a horizontal line connecting the vapor equilibrium curve with that of the liquid 

equilibrium curve.  The locus of this curve was decided such that the area remaining above the curve 

and below are equal. 

We have removed the ideal gas assumptions from the equation of state.  Now we will do the same 

for the internal energy. 
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Internal Energy of a Real Fluid 

   So far, we used The following identity to estimate the internal energy of the ideal gas 

 
𝑑𝑈

𝑑𝑇
= 𝑛 𝐶𝑣

∗  

For the real fluids, this expression will take the following form 

(
𝜕𝑈

𝜕𝑇
)

𝑉
= 𝑛 𝐶𝑣 

Notice the difference between these two expressions.  The total derivative indicating U is only a 

function of temperature for an Ideal Gas is replaced with a particle derivative, indicating that U depends 

on more than one variable.  In this section we will learn these parameters and their interrelationships.   

In order to estimate the thermodynamic behavior of the real fluid, we need to start from the energy 

balance and the entropy balance.  This time we will have a real fluid confined in a piston and cylinder 

assembly, under closed system configurations, and there is no shaft work.  The energy balance reduces 

to  

𝑑𝑈

𝑑𝑡
= �̇� − 𝑃

𝑑𝑉

𝑑𝑡
   

Similarly, entropy balance reduces to (for situations that the entropy generation is not considered) 

𝑑𝑆

𝑑𝑡
=

�̇�

𝑇
 

Hence, substitution yields,  

𝑑𝑈

𝑑𝑡
= 𝑇

𝑑𝑆

𝑑𝑡
− 𝑃

𝑑𝑉

𝑑𝑡
   

We can eliminate the dt terms to have the most general expression of the internal energy: 
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dU=TdS-PdV 

This expression tells us that U is a function of entropy and volume, U(S,V). This is the most 

fundamental level of defining the internal energy coordinate system.  But similar to mathematics, where 

we change the variables in order to ease the calculations, we can do the same in thermodynamics.  As 

we have seen so far, entropy is a difficult state variable to control or measure.  Therefore, we will switch 

the coordinates to T, V instead (however, will always remember that internal energy is a function of 

entropy and volume, at the fundamental level) .  The coordinate transformation will require defining 

entropy, S, as a function of T and V,  S(T,V).  Then we will substitute this function in the definition of 

internal energy equation.  

If S (T,V) then, ⅆS = (
∂S

∂T
)

v
ⅆT + (

∂S

∂V
)

T
ⅆV 

Now, we need to define (
∂S

∂T
)

v
 and (

∂S

∂V
)

T
.   

Starting from dU=TdS-PdV , dividing both sides by dT and keeping volume constant, in other words, 

dV =0 gives us 

(
∂U

∂T
)

v
= 𝑇 (

∂S

∂T
)

v
 

Remember 

(
𝜕𝑈

𝜕𝑇
)

𝑉
= 𝑛 𝐶𝑣 

Therefore  

(
∂S

∂T
)

v
= 𝑛

𝐶𝑣

𝑇
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Being able to replace (
∂S

∂V
)

T
 will require a little bit more effort.  We will bring the PVT equivalent of 

this term from the Helmholtz free energy based Maxwell relations.   

(
𝜕𝑆

𝜕𝑉
)

𝑇
=  (

∂P

∂T
)

V
 

With this substitution, we obtain an equation for the  entropy: 

ⅆS = 𝑛
𝐶𝑣

𝑇
ⅆT + (

∂P

∂T
)

V
ⅆV 

Substituting this will give us the relationship for the internal energy: 

ⅆU = T [𝑛
𝐶𝑣

𝑇
ⅆT + (

∂P

∂T
)

V
ⅆV] − 𝑃𝑑𝑉  

rearranging gives: 

ⅆU = n𝐶𝑣ⅆT + [(
∂P

∂T
)

V
− 𝑃] 𝑑𝑉  

This is the equation we should use to determine the internal energy change.   

Example 

Determine the internal energy change for an ideal gas. 

Solution 

The equation of state for an ideal gas is given by  𝑃 = 𝑛𝑅𝑇/𝑉 .  We have to determine the function 

(
∂P

∂T
)

V
− 𝑃 for the ideal gas.   

(
∂P

∂T
)

V
= 𝑛𝑅/𝑉 
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Upon substitution, we obtain  

(
∂P

∂T
)

V
− 𝑃 =

𝑛𝑅𝑇

𝑉
− 𝑃 = 0 

Hence, for an ideal gas  ⅆ𝐔 = 𝐧𝑪𝒗ⅆ𝐓 

Example  

Derive the function for internal energy change for a van der Waals equation of state.   

Solution 

Van Der Waals equation of state is given by  𝑃 =
𝑅𝑇

𝑉−𝑏
−

𝑎

𝑉2 .  We have to determine the function 

(
∂P

∂T
)

V
− 𝑃 for the ideal gas.   

(
∂P

∂T
)

V
=

𝑅𝑇

𝑉 − 𝑏
 

Upon substitution, we obtain  

(
∂P

∂T
)

V
− 𝑃 =

𝑛𝑅𝑇

𝑉
− 𝑃 =

𝑎

𝑉2
 

Hence, for a van der Waals gas  ⅆ𝐔 = 𝐧𝑪𝒗ⅆ𝐓 +
𝒂

𝑽𝟐 𝒅𝑽 
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Maxwell relationships 

First we have to derive Maxwell’s relationships.  Maxwell’s relationships define how the 

thermodynamic independent parameters, T, S, P and V are related to each other.  You may have already 

noticed from the example we used in the beginning of this document that  we had four different forms 

of energy U, H, A and G.  Each simplified a situation under a particular constraint so that we knew how 

much shaft work was done, through the changes in these energies.  Now we will use these energies and 

their dependency on the variables T, S, P and V to establish relationships between the independent 

variables.  

I will derive the relationship based on U function, and will leave the rest as an exercise for you ( and 

if you attended the lecture, you know what to do).  The internal energy at the fundamental level, (i.e. by 

the combination of the first and second laws) is a function of S and V.  

U=U(S, V) 

Therefore its derivative should look like 

ⅆU = (
∂U

∂S
)

v
ⅆS + (

∂U

∂V
)

S
ⅆV 

We started this course by taking energy as a conserved quantity.  As such, the differential equation 

above is an exact differential, which allows the commutation of the differentiation operators.  In other 

words,  

(
𝜕

𝜕𝑉
(

∂U

∂S
)

v
)

𝑆

= (
𝜕

𝜕𝑆
(

∂U

∂V
)

S
)

𝑉

 

There is a second step: We also know that   dU=TdS-PdV 
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if we compare  

dU=TdS-PdV and  ⅆU = (
∂U

∂S
)

v
ⅆS + (

∂U

∂V
)

S
ⅆV, we notice that 

(
∂U

∂S
)

v
= 𝑇 and (

∂U

∂V
)

S
= −𝑃 

So let us substitute these equalities in  (
𝜕

𝜕𝑉
(

∂U

∂S
)

v
)

𝑆
= (

𝜕

𝜕𝑆
(

∂U

∂V
)

S
)

𝑉
to obtain,  

(
𝜕𝑇

𝜕𝑉
)

𝑆
=  − (

∂P

∂S
)

V
 

This last equality is the Maxwell relationship.  It relates T, V,P and S to each other.   

enthalpy 

We will relate T,V, P and S to each other starting from the equation for H. 

H=U+PV 

dH= dU + d(PV) = TdS-PdV+ PdV + VdP 

dH= TdS+VdP 

Exercise:  Using the tools of mathematics, derive the following relationships 

(
∂H

∂S
)

P
= 𝑇 and (

∂H

∂P
)

S
= 𝑉 

(
𝜕𝑇

𝜕𝑃
)

𝑆
=  (

∂V

∂S
)

P
 

 



Prof. Dr. Deniz Uner 
Chemical Engineering. Middle East Technical University, Ankara  
 

14 
 

Helmholtz Free Energy 

We will relate T, V, P and S to each other starting from the equation for A. 

A=U-TS 

dA= dU - d(TS) = TdS-PdV-TdS-SdT  

dA= -SdT-PdV  

Exercise:  Using the same tools of mathematics we used above for internal energy based derivations, 

derive the following relationships 

(
∂A

∂T
)

V
= −𝑆 and (

∂A

∂V
)

T
= −𝑃 

The corresponding Maxwell relationship is  

(
𝜕𝑆

𝜕𝑉
)

𝑇
=  (

∂P

∂T
)

V
 

Gibbs Free Energy 

We will relate T, V, P and S to each other starting from the equation for G. 

G=H-TS 

dG= dH - d(TS) = TdS+VdP-TdS-SdT  

dG= -SdT+VdP  

Exercise:  Using the same tools of mathematics we used above for internal energy based derivations, 

derive the following relationships 
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(
∂G

∂T
)

P
= −𝑆 and (

∂G

∂P
)

T
= 𝑉 

The corresponding Maxwell relationship is  

− (
𝜕𝑆

𝜕𝑃
)

𝑇
=  (

∂V

∂T
)

P
 

 

 

 

 

 

 

 

  

 

 

 

Let us solve for ⅆS from dU=TdS-PdV,   

𝑑𝑆 =  
1

𝑇
𝑑𝑈 +

𝑃

𝑇
𝑑𝑉 
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.  Calculate 

1. Determine the reversible shaft work needed to increase the temperature of a monoatomic  

ideal gas from 300 K to 500 K. 

a. If the process is conducted under constant volume and adiabatic conditions. What is the 

final pressure? 

b. If the process is conducted under constant pressure and adiabatic conditions. What is 

the final volume? 

2. A monoatomic ideal gas, initially at 1 atm and 300 K is kept in a 1 L container. Determine the 

reversible shaft work needed to increase the pressure to 2 atm while keeping the temperature 

and volume constant.  

3. A monoatomic ideal gas, initially at 1 atm and 300 K is kept in a 1 L container. Determine the 

reversible shaft work needed to increase the volume to 2 liters, while keeping the temperature 

and pressure constant.   

Evaluate yourself 

Check if you have answers to the following questions: 
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1. Why do we need these four different forms of energy, i.e., U, H, G and A?  

2. What is the difference between internal energy and enthalpy? 

3. What is the difference between Helmholtz free energy and Gibbs Free Energy? 

4. Why Helmholtz Free Energy and Gibbs Free Energy are called free energies? What makes them 

free? Is there a bound energy? 

5. Why is entropy an independent variable in the thermodynamic landscape? 


