EE-362

Review of Electromechanical Energy Conversion

Ozan Keysan

keysan.me
Office: C-113 • Tel: 2107586

Lorenz Force

$$
\vec{F}=\vec{J} \times \vec{B}
$$

Lorenz Force Applications

- Force Demo
- Homopolar Motor
- Wolrd's Simplest Electric Train
- Electromagnetic Aircraft Launcher
- Navy Railgun, Railgun-2
- Aselsan Tufan
- Aselsan Tufan-2

Determine the direction of rotation

What would happen in the device below?

Link Between Electrical and Mechanical

 Systems

Electric Energy Input = Stored Magnetic Energy + Mechanical Work

Review: Magnetic Energy

Review: Magnetic Energy

$W_{\text {stored }}=\int_{0}^{\lambda} i(\lambda) d \lambda$

Review: Magnetic Energy

$W_{\text {stored }}=\int_{0}^{\lambda} i(\lambda) d \lambda$
or from B-H curve
$W_{\text {stored }}=\int_{\text {volume }}\left(\int_{0}^{B} \underline{H d B}\right)$

Magnetic Energy

In Linear Systems:

Magnetic Energy

In Linear Systems:
Magnetic Energy = Magnetic Co-Energy

Magnetic Energy

In Linear Systems:
Magnetic Energy = Magnetic Co-Energy
Magnetic Energy + Magnetic Co-Energy $=\lambda i$

Magnetic Energy
In Linear Systems:

$$
L=\frac{\lambda}{ \pm} \quad \lambda=L I
$$

Magnetic Energy = Magnetic Co-Energy
Magnetic Energy + Magnetic Co-Energy $=\lambda i$

Thus (only in linear systems)
$W($ magnetic $)=\overline{\frac{1}{2} \overline{\lambda i}}=\frac{\frac{1}{2} L i^{2}}{\text { Joule }}=\frac{1}{2 L} \lambda^{2}$

Force from the Stored Energy

Force from the Stored Energy

Derivative of Energy w.r.t. position gives the force!

Force from Stored Energy

Take derivative of magnetic energy

Force from Stored Energy

Take derivative of magnetic energy

Some useful reading:

- MIT From Lasers to Motors
- Fitzgerald-Electromechanical Energy Conversion

Force from Stored Energy

$$
\text { Force }=-\left.\frac{\partial W_{m a g}(\lambda, x)}{\partial x}\right|_{\lambda=\text { constant }}
$$

Force from Stored Energy

$$
\text { Force }=-\left.\frac{\partial W_{\text {mag }}(\lambda, x)}{\partial x}\right|_{\lambda=\text { constant }}
$$

For Linear Systems
Force $=-\frac{\partial}{\partial x}\left(\frac{\lambda^{2}}{2 L(x)}\right)=\frac{\lambda^{2}}{2 L(x)^{2}}\left(\frac{d L(x)}{d x}\right)$

Force from Stored Energy

$$
\begin{aligned}
& \text { Force }=-\left.\frac{\partial W_{\text {mag }}(\lambda, x)}{\partial x}\right|_{\lambda=\text { constant }} \\
& \text { For Linear Systems }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Force }=-\frac{\partial}{\partial x}\left(\frac{\lambda^{2}}{2 L(x)}\right)=\frac{\lambda^{2}}{2 L(x)^{2}}\left(\frac{d L(x)}{d x}\right) \\
& \text { Force }=\frac{1}{2}\left(\dot{i}^{2} d \frac{d(x)}{d x}\right)
\end{aligned}
$$

Summary

Magnetic Circuit Tries

Summary

Magnetic Circuit Tries

- To reduce $W_{\text {magnetic }}$ if Φ is constant

Summary

Magnetic Circuit Tries

- To reduce $W_{\text {magnetic }}$ if Φ is constant
. To maximize the inductance

Summary

Magnetic Circuit Tries

- To reduce $W_{\text {magnetic }}$ if Φ is constant
. To maximize the inductance
. To minimize the reluctance ($L=N^{2} / R$)

Some Applications

Some Applications
How a speaker works?

You can think it is just a basic solenoid, but it's more complex than that.

How Speakers Work

(Reading assignment)

Who is this guy?

Amar Bose

Founder of Bose Corp, MIT Professor, Electrical Engineering

How Amar Bose used research to build better speakers
Now MIT owns the majority shares in Bose Corp.

Magnetism in Medicine:

Magnetism in Medicine:

Malaria

Malaria vs Permeability

Diagnosis using Magnetic Alignment

Magnets diagnose malaria in minutes

Malaria Treatment

Malaria's Magnetic Properties May Pull Treatments Forward

Summary

Magnetic Circuit Tries

- To reduce $W_{\text {magnetic }}$ if Φ is constant
. To maximize the inductance
. To minimize the reluctance ($L=N^{2} / R$)

Mechanical Power \& Energy:

Mechanical Power \& Energy:

Linear Motion:

Mechanical Power \& Energy:

Linear Motion: $P=\underset{\substack{\text { velaty } \\(\mathrm{m} / \mathrm{s})}}{F v}=\stackrel{\partial}{\boldsymbol{v}} \underset{\sim}{d t} \frac{d x}{d t}$

Mechanical Power \& Energy:

Linear Motion: $P=F v=F \frac{d x}{d t}$ Watt Rotational:

Mechanical Power \& Energy:

Linear Motion: $P=\int_{\sigma}^{\stackrel{N}{F}\left(v^{m / s}=F\right.} \frac{d \hat{x}}{d t}$ Watt $^{\Delta x}$

$$
\omega=\frac{d \theta}{d t}
$$

Rotational: $P=T \omega=T \frac{d \theta}{d t}$ Watt Fore ($N . m$)

Mechanical Power \& Energy:

Linear Motion: $P=F v=F_{\left(\frac{d x}{d t}\right.}$ Watt
Rotational: $P=T \omega=T \frac{d \theta}{d t}$ Watt
Linear Motion: $W=\int P \underline{d} t=\underline{F x} \underline{\underline{\text { Joule }}}$

Mechanical Power \& Energy:
Linear Motion: $P=F v=F \frac{d x}{d t}$ Watt
Rotational: $P=T \omega=T \frac{d \theta}{d t}$ Watt
Linear Motion: $W=\int P d t=\underline{F x}$ Joule
Rotational: $W=\int P d t=\underline{T \theta}$ Joule

Linear Acceleration:

Linear Acceleration:

$$
F=m a=m \frac{d v}{d t}
$$

Linear Acceleration:

$$
F=m a=m \frac{d v}{d t}
$$

Rotational Acceleration:

Linear Acceleration:
$F=m a=m \frac{d v}{d t} \quad \frac{1}{2} m v^{2}$
Rotational Acceleration:
$T=J \frac{d \omega}{d t}$ Watt $\quad \frac{1}{2} J \omega^{2}$
$\mathrm{J}:$ Rotational Inertia $\left(\mathrm{kgm}^{2}\right)$

Can you guess the torque expression in this circuit?

Rotational Sytems:

Rotational Sytems:

Remember in linear systems:

$$
f=-\left.\frac{\partial W_{\operatorname{mag}}(\Phi, x)}{\partial x}\right|_{\Phi=\text { constant }}
$$

Rotational Sytems:

Remember in linear systems:

$$
f=-\left.\frac{\partial W_{m a g}(\Phi, x)}{\partial x}\right|_{\Phi=c o n s t a n t}
$$

In rotational systems, just take the derivative wrt θ not x :

Rotational Sytems:

Remember in linear systems:
$f=-\left.\frac{\partial W_{\operatorname{mag}}(\Phi, x)}{\partial x}\right|_{\Phi=\text { constant }}$
In rotational systems, just take the derivative wrt θ not x :
$T=-\left.\frac{\partial W_{\text {mag }}(\Phi, \theta)}{\partial \theta}\right|_{\Phi=\text { constant }}$

More information

Rotational Sytems:

Take the derivative wrt θ not x :

Rotational Sytems:

Take the derivative wrt θ not x :

$$
T=-\left.\frac{1}{2} \Phi^{2} \frac{d R(\theta)}{d \theta}\right|_{\Phi=\text { constant }}
$$

or alternatively

$$
T=\left.\frac{1}{2} I^{2} \frac{d L(\theta)}{d \theta}\right|_{i=\text { constant }}
$$

How can we achieve a constant rotation?

How can we achieve a constant rotation?

Single Phase Reluctance Motor

How can we achieve a constant rotation?

Single Phase Reluctance Motor

Single Phase Reluctance Motor

Single Phase Reluctance Motor

Magnetic Flux, Micro-stepping for higher accuracy.

Reluctance Motors

More info

Magnetorquer: How small satellites align themselves?

Magnetorquer
CubeSat Magnetorquer

Who is this guy?

James Dyson

[^0]
Dyson uses Reluctance Motors

Digital Motor, Operating Principle, Manufacturing

Summary

Magnetic Circuit Tries

Summary

Magnetic Circuit Tries

- To maximize the inductance, to minimize the reluctance ($L=N^{2} / R$)
- To decrease the magnetic energy (increase co-energy)

Rotational systems are similar to linear systems, but take the derivative of magnetic energy in terms of θ instead of x.

You can download this presentation from: keysan.me/ee362

[^0]: Digital Motor, Operating Principle, Manufacturing

