EE-362

Review of Electromechanical Energy Conversion

Ozan Keysan

<u>keysan.me</u>

Office: C-113 • Tel: 210 7586

Lorenz Force

 $\vec{F} = \vec{J} \times \vec{B}$

Lorenz Force Applications

- Force Demo
- <u>Homopolar Motor</u>
- <u>Wolrd's Simplest Electric Train</u>
- Electromagnetic Aircraft Launcher
- <u>Navy Railgun</u>, <u>Railgun-2</u>
- Aselsan Tufan
- Aselsan Tufan-2

Determine the direction of rotation

4/35

What would happen in the device below?

Link Between Electrical and Mechanical Systems

Electric Energy Input = Stored Magnetic Energy + Mechanical Work

Review: Magnetic Energy

$$W_{stored} = \int_0^\lambda i(\lambda) d\lambda$$

Review: Magnetic Energy

$$W_{stored} = \int_0^\lambda i(\lambda) d\lambda$$

or from B-H curve $\sqrt[5]{m^3}$ $W_{stored} = \int_{volume} (\int_0^B H dB)$

In Linear Systems:

In Linear Systems:

```
Magnetic Energy = Magnetic Co-Energy
```

In Linear Systems:

```
Magnetic Energy = Magnetic Co-Energy
```

Magnetic Energy + Magnetic Co-Energy = λi

In Linear Systems:

Magnetic Energy = Magnetic Co-Energy

Magnetic Energy + Magnetic Co-Energy = λi

N=LI $l = \Lambda$ III ISA,I

9/35

Thus (only in linear systems)

W(magnetic) =
$$\frac{1}{2}\lambda i = \frac{1}{2}Li^2 = \frac{1}{2L}\lambda^2$$

Jack

 $\int \frac{\Delta X}{Mg} \frac{Joule}{\Delta X} = F. \Delta X$ F=Mg

10/35

Derivative of Energy w.r.t. position gives the force!

10/35

Take derivative of magnetic energy

Take derivative of magnetic energy

Some useful reading:

- MIT From Lasers to Motors
- <u>Fitzgerald-Electromechanical Energy Conversion</u>

$$Force = -\frac{\partial W_{mag}(\lambda, x)}{\partial x}|_{\lambda=constant}$$

$$Force = -\frac{\partial W_{mag}(\lambda, x)}{\partial x}|_{\lambda=constant}$$

For Linear Systems

Force
$$= -\frac{\partial}{\partial x} \left(\frac{\lambda^2}{2L(x)} \right) = \frac{\lambda^2}{2L(x)^2} \left(\frac{dL(x)}{dx} \right)$$

For Linear Systems

Force =
$$-\frac{\partial}{\partial x}(\frac{\lambda^2}{2L(x)}) = \frac{\lambda^2}{2L(x)^2}(\frac{dL(x)}{dx})$$

Force = $\frac{1}{2}i^2\frac{dL(x)}{dx}$

12/35

Magnetic Circuit Tries

Magnetic Circuit Tries

. To reduce $W_{magnetic}$ if Φ is constant

Magnetic Circuit Tries

. To reduce $W_{magnetic}$ if Φ is constant

. To maximize the inductance

Magnetic Circuit Tries

- . To reduce $W_{magnetic}$ if Φ is constant
- . To minimize the reluctance ($L=N^2/R$)

Some Applications

Some Applications

How a speaker works?

You can think it is just a basic solenoid, but it's more complex than that.

How Speakers Work

(Reading assignment)

Who is this guy?

<u>Amar Bose</u>

Founder of Bose Corp, MIT Professor, Electrical Engineering

How Amar Bose used research to build better speakers

Now MIT owns the <u>majority shares</u> in Bose Corp.

Magnetism in Medicine:

Magnetism in Medicine:

<u>Malaria</u>

Malaria vs Permeability

Diagnosis using Magnetic Alignment

Physicists detect malaria using light and magnets

Magnets diagnose malaria in minutes

_icht

right

Malaria Treatment

Malaria's Magnetic Properties May Pull Treatments Forward

20/35

Magnetic Circuit Tries

- . To reduce $W_{magnetic}$ if Φ is constant
- . To maximize the inductance
- . To minimize the reluctance ($L = N^2/R$)

Mechanical Power & Energy:

Mechanical Power & Energy:

Linear Motion:

Linear Motion:
$$P = Fv = \overline{F} \frac{dx}{dt}$$
 Watt

Linear Motion:
$$P = Fv = Frac{dx}{dt}$$
 Watt

Rotational:

Linear Motion:
$$P = Fv = F \frac{dx}{dt}$$
 Watt
Rotational: $P = T\omega = T \frac{d\theta}{dt}$ Watt

Linear Motion:
$$W = \int P dt = F x$$
 Joule

Linear Motion:
$$P=Fv=Frac{dx}{dt}$$
 Watt

Rotational:
$$P=T\omega=Trac{d heta}{dt}$$
 Watt

Linear Motion:
$$W=\int Pdt= Fx$$
 Joule

Rotational:
$$W=\int Pdt= extsf{T} heta$$
 Joule

$$F = ma = m\frac{dv}{dt}$$

$$F = ma = m\frac{dv}{dt}$$

Rotational Acceleration:

$$F = \underline{m}a = m\frac{dv}{dt} \qquad \frac{1}{2}mv^2$$

Rotational Acceleration:

$$T = J \frac{d\omega}{dt} \text{ Watt}$$

$$\frac{1}{2}$$
 J ω^2

J: Rotational Inertia (kgm^2)

Can you guess the torque expression in this circuit?

Remember in linear systems:

$$f = -\frac{\partial W_{mag}(\Phi, x)}{\partial x}|_{\Phi=constant}$$

Remember in linear systems:

$$f = -\frac{\partial W_{mag}(\Phi, x)}{\partial x}|_{\Phi=constant}$$

In rotational systems, just take the derivative wrt θ not x:

Remember in linear systems:

$$f = -\frac{\partial W_{mag}(\Phi, x)}{\partial x}|_{\Phi=constant}$$

In rotational systems, just take the derivative wrt θ not x:

$$T = -\frac{\partial W_{mag}(\Phi, \theta)}{\partial \theta}|_{\Phi=constant}$$

More information

Take the derivative wrt θ not x:

Take the derivative wrt θ not x:

$$T = -\frac{1}{2}\Phi^2 \frac{dR(\theta)}{d\theta}|_{\Phi=constant}$$

or alternatively

$$T = \frac{1}{2} I^2 \frac{dL(\theta)}{d\theta}|_{i=constant}$$

How can we achieve a constant rotation?

How can we achieve a constant rotation?

Single Phase Reluctance Motor

How can we achieve a constant rotation?

Single Phase Reluctance Motor

Single Phase Reluctance Motor

Single Phase Reluctance Motor

Magnetic Flux, Micro-stepping for higher accuracy

Reluctance Motors

<u>More info</u>

Magnetorquer: How small satellites align themselves?

<u>Magnetorquer</u>

<u>CubeSat Magnetorquer</u>

Who is this guy?

James Dyson

Digital Motor, Operating Principle, Manufacturing

Dyson uses Reluctance Motors

Digital Motor, Operating Principle, Manufacturing

Summary

Magnetic Circuit Tries

Summary

Magnetic Circuit Tries

- To maximize the inductance, to minimize the reluctance ($L=N^2/R$)
- To decrease the magnetic energy (increase co-energy)
- Rotational systems are similar to linear systems, but take the derivative of magnetic energy in terms of θ instead of x.

You can download this presentation from: <u>keysan.me/ee362</u>