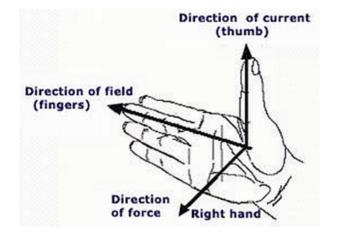
EE-362

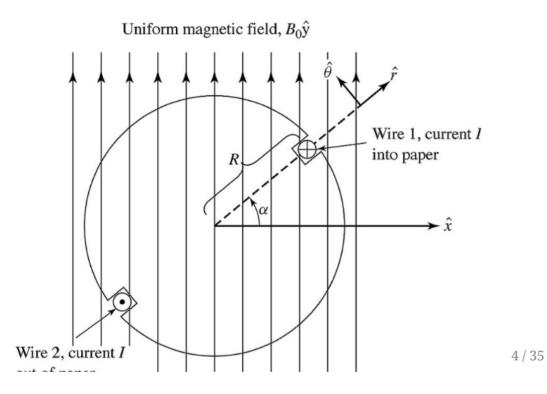
Review of Electromechanical Energy Conversion

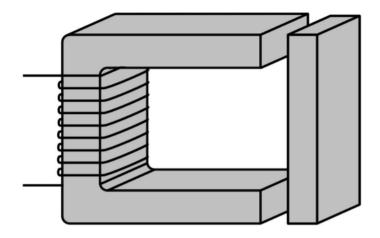

Ozan Keysan

<u>keysan.me</u>

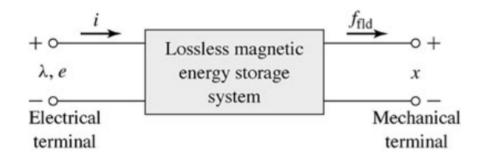
Office: C-113 • Tel: 210 7586

Lorenz Force

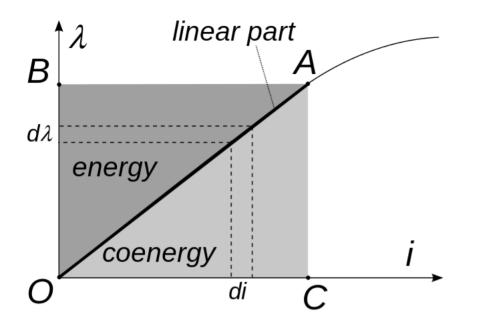

 $\vec{F} = \vec{J} \times \vec{B}$


Lorenz Force Applications

- Force Demo
- <u>Homopolar Motor</u>
- <u>Wolrd's Simplest Electric Train</u>
- Electromagnetic Aircraft Launcher
- <u>Navy Railgun</u>, <u>Railgun-2</u>
- <u>Aselsan Tufan</u>
- <u>Aselsan Tufan-2</u>


Determine the direction of rotation

What would happen in the device below?



Link Between Electrical and Mechanical Systems

Electric Energy Input = Stored Magnetic Energy + Mechanical Work

Review: Magnetic Energy

7/35

Review: Magnetic Energy

$$W_{stored} = \int_0^\lambda i(\lambda) d\lambda$$

Review: Magnetic Energy

$$W_{stored} = \int_0^\lambda i(\lambda) d\lambda$$

or from B-H curve

$$W_{stored} = \int_{volume} (\int_0^B H dB)$$

8/35

In Linear Systems:

In Linear Systems:

Magnetic Energy = M	agnetic Co-Energy
---------------------	-------------------

In Linear Systems:

```
Magnetic Energy = Magnetic Co-Energy
```

```
Magnetic Energy + Magnetic Co-Energy = \lambda i
```

In Linear Systems:

```
Magnetic Energy = Magnetic Co-Energy
```

```
Magnetic Energy + Magnetic Co-Energy = \lambda i
```

Thus (only in linear systems)

W(magnetic) =
$$\frac{1}{2}\lambda i = \frac{1}{2}Li^2 = \frac{1}{2L}\lambda^2$$

Derivative of Energy w.r.t. position gives the force!

Take derivative of magnetic energy

Take derivative of magnetic energy

$$Force = -\frac{\partial W_{mag}(\lambda, x)}{\partial x}|_{\lambda=constant}$$

Some useful reading:

- MIT From Lasers to Motors
- <u>Fitzgerald-Electromechanical Energy Conversion</u>

 $Force = -\frac{\partial W_{mag}(\lambda, x)}{\partial x}|_{\lambda=constant}$

$$Force = -\frac{\partial W_{mag}(\lambda, x)}{\partial x}|_{\lambda = constant}$$

For Linear Systems

Force
$$= -\frac{\partial}{\partial x}(\frac{\lambda^2}{2L(x)}) = \frac{\lambda^2}{2L(x)^2}(\frac{dL(x)}{dx})$$

12/35

$$Force = -\frac{\partial W_{mag}(\lambda, x)}{\partial x}|_{\lambda = constant}$$

For Linear Systems

$$Force = -\frac{\partial}{\partial x} \left(\frac{\lambda^2}{2L(x)}\right) = \frac{\lambda^2}{2L(x)^2} \left(\frac{dL(x)}{dx}\right)$$
$$Force = \frac{1}{2}i^2 \frac{dL(x)}{dx}$$

Magnetic Circuit Tries

Magnetic Circuit Tries

. To reduce $W_{magnetic}$ if Φ is constant

Magnetic Circuit Tries

- . To reduce $W_{magnetic}$ if Φ is constant
- . To maximize the inductance

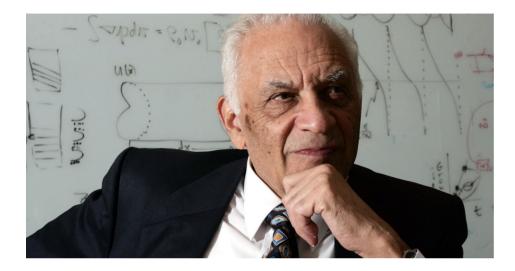
Magnetic Circuit Tries

- . To reduce $W_{magnetic}$ if Φ is constant
- . To maximize the inductance
- . To minimize the reluctance ($L = N^2/R$)

Some Applications

Some Applications

How a speaker works?



You can think it is just a basic solenoid, but it's more complex than that.

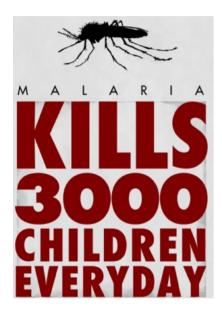
How Speakers Work

(Reading assignment)

Who is this guy?

<u>Amar Bose</u>

Founder of Bose Corp, MIT Professor, Electrical Engineering


How Amar Bose used research to build better speakers

Now MIT owns the <u>majority shares</u> in Bose Corp.

Magnetism in Medicine:

Magnetism in Medicine:

<u>Malaria</u>

Malaria vs Permeability

Diagnosis using Magnetic Alignment

<u>Physicists detect malaria using light and magnets</u>

Magnets diagnose malaria in minutes

Malaria Treatment

Malaria's Magnetic Properties May Pull Treatments Forward

Magnetic Circuit Tries

- . To reduce $W_{magnetic}$ if Φ is constant
- . To maximize the inductance
- . To minimize the reluctance ($L = N^2/R$)

Mechanical Power & Energy:

Mechanical Power & Energy:

Linear Motion:

Linear Motion:
$$P = Fv = F \frac{dx}{dt}$$
 Watt

Linear Motion:
$$P = Fv = F\frac{dx}{dt}$$
 Watt

Rotational:

Linear Motion:
$$P = Fv = F\frac{dx}{dt}$$
 Watt

Rotational:
$$P = T\omega = T\frac{d\theta}{dt}$$
 Watt

Linear Motion:
$$P = Fv = F\frac{dx}{dt}$$
 Watt

Rotational:
$$P = T\omega = T\frac{d\theta}{dt}$$
 Watt

Linear Motion:
$$W = \int P dt = F x$$
 Joule

Linear Motion:
$$P = Fv = F \frac{dx}{dt}$$
 Watt

Rotational:
$$P = T\omega = T\frac{d\theta}{dt}$$
 Watt

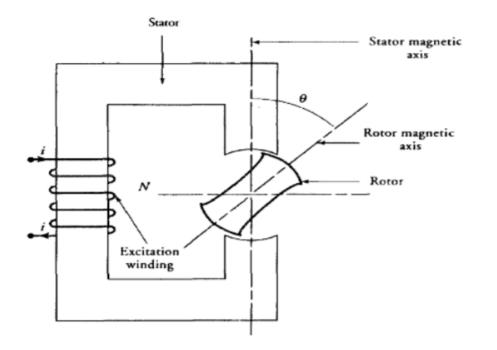
Linear Motion:
$$W = \int P dt = F x$$
 Joule

Rotational:
$$W = \int P dt = T \theta$$
 Joule

$$F = ma = m\frac{dv}{dt}$$

$$F = ma = m\frac{dv}{dt}$$

Rotational Acceleration:


$$F = ma = m\frac{dv}{dt}$$

Rotational Acceleration:

$$T = J rac{d\omega}{dt}$$
 Watt

J: Rotational Inertia (kgm^2)

Can you guess the torque expression in this circuit?

Remember in linear systems:

$$f = -\frac{\partial W_{mag}(\Phi, x)}{\partial x}|_{\Phi=constant}$$

Remember in linear systems:

$$f = -\frac{\partial W_{mag}(\Phi, x)}{\partial x}|_{\Phi=constant}$$

In rotational systems, just take the derivative wrt θ not x:

Remember in linear systems:

$$f = -\frac{\partial W_{mag}(\Phi, x)}{\partial x}|_{\Phi=constant}$$

In rotational systems, just take the derivative wrt heta not x:

$$T = -\frac{\partial W_{mag}(\Phi, \theta)}{\partial \theta}|_{\Phi=constant}$$

More information

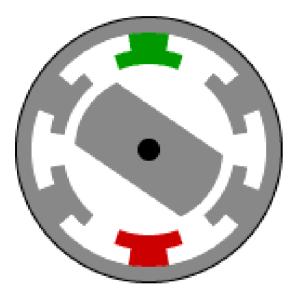
Take the derivative wrt θ not x:

Take the derivative wrt θ not x:

$$T = -\frac{1}{2}\Phi^2 \frac{dR(\theta)}{d\theta}|_{\Phi=constant}$$

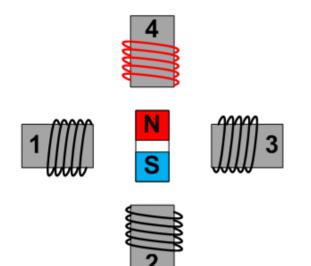
or alternatively

$$T = \frac{1}{2} I^2 \frac{dL(\theta)}{d\theta} |_{i=constant}$$


How can we achieve a constant rotation?

How can we achieve a constant rotation?

Single Phase Reluctance Motor


How can we achieve a constant rotation?

Single Phase Reluctance Motor

Single Phase Reluctance Motor

Single Phase Reluctance Motor

<u>Magnetic Flux, Micro-stepping for higher accuracy</u>

Reluctance Motors

<u>More info</u>

Magnetorquer: How small satellites align themselves?

<u>Magnetorquer</u>

<u>CubeSat Magnetorquer</u>

Who is this guy?

James Dyson

<u>Digital Motor, Operating Principle, Manufacturing</u>

Dyson uses Reluctance Motors

<u>Digital Motor</u>, <u>Operating Principle</u>, <u>Manufacturing</u>

Summary

Magnetic Circuit Tries

Summary

Magnetic Circuit Tries

- To maximize the inductance, to minimize the reluctance ($L=N^2/R$)
- To decrease the magnetic energy (increase co-energy)

Rotational systems are similar to linear systems, but take the derivative of magnetic energy in terms of θ instead of x.

You can download this presentation from: <u>keysan.me/ee362</u>