EE-362

Multiply-Excited Systems

Dynamic Mechanical Systems

Ozan Keysan

ozan.keysan.me

Office: C-113 • Tel: 210 7586

1/26

Review:

Rotational Systems:

$$F = -\frac{1}{2}\Phi^2 \frac{dR(x)}{dx}$$

or alternatively

$$F = \frac{1}{2}I^2 \frac{dL(x)}{dx}$$

Review:

Rotational Systems:

$$T = -\frac{1}{2}\Phi^2 \frac{dR(\theta)}{d\theta}$$

or alternatively

$$T = \frac{1}{2}I^2 \frac{dL(\theta)}{d\theta}$$

What is the torque in the following systems?

- a) If Coil#1 is excited only,
- b) If Coil#2 is excited only,

What is the torque?

Cylindrical Rotor, Cylindrical Stator

What is the torque?

Cylindrical Rotor, Salient Stator

What is the torque?

Salient Rotor, Cylindrical Stator

Multiply-Excited Systems

What happens if both of the coils are excited?

Multiply-Excited Systems

Electrical Energy = Magnetic Energy + Mechanical Energy

Multiply-Excited Systems

Electrical Energy = Magnetic Energy + Mechanical Energy

Mutual Inductance

Write down the voltage equation of Inductor 2.

10/26

$$W_{mag1} = \frac{1}{2}i^2L$$

$$W_{mag1} = \frac{1}{2}i^2L \longrightarrow \text{Not Correct!}$$

$$W_{mag1} = \frac{1}{2}i^2L \longrightarrow \text{Not Correct!}$$

 $dW_{mag1} = i_1 d\lambda_1$

$$W_{mag1} = \frac{1}{2}i^2L \longrightarrow \text{Not Correct!}$$

 $dW_{mag1} = i_1 d\lambda_1$

$$dW_{mag1} = i_1(L_{11}di_1 + L_{12}di_2)$$

Total stored energy (coil1+coil2)?

$$dW_{mag} = i_1 d\lambda_1 + i_2 d\lambda_2$$

Total stored energy (coil1+coil2)?

$$dW_{mag} = i_1 d\lambda_1 + i_2 d\lambda_2$$

Or it can be written as:

Total stored energy (coil1+coil2)?

$$dW_{mag} = i_1 d\lambda_1 + i_2 d\lambda_2$$

Or it can be written as:

$$W_{mag} = \int dW_{mag}$$
$$= \frac{1}{2}L_{11}i_1^2 + \frac{1}{2}L_{22}i_2^2 + Mi_1i_2$$

Stored Energy in Matrix Form

Stored Energy in Matrix Form

$$W_{mag} = \frac{1}{2} \begin{bmatrix} i_1 & i_2 \end{bmatrix} \begin{bmatrix} L_{11} & M \\ M & L_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

Stored Energy in Matrix Form

$$W_{mag} = \frac{1}{2} \begin{bmatrix} i_1 & i_2 \end{bmatrix} \begin{bmatrix} L_{11} & M \\ M & L_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$

Generalized case

$$W_{mag} = \frac{1}{2} \mathbf{I}_t \mathbf{L} \mathbf{I}$$

An application of multiply excited systems: <u>Contactless Surgery More</u> <u>information</u>

Torque in Multiply Excited Sytems

still depends on the derivative of W_{mag}

Torque in Multiply Excited Sytems

still depends on the derivative of W_{mag}

$$T_{mech} = \frac{1}{2} \frac{dL_{11}}{d\theta} i_1^2 + \frac{1}{2} \frac{dL_{22}}{d\theta} i_2^2 + \frac{dM}{d\theta} i_1 i_2$$

Torque in Multiply Excited Sytems

still depends on the derivative of W_{mag}

$$T_{mech} = \frac{1}{2} \frac{dL_{11}}{d\theta} i_1^2 + \frac{1}{2} \frac{dL_{22}}{d\theta} i_2^2 + \frac{dM}{d\theta} i_1 i_2$$

$$T_{mech} = \frac{1}{2} \mathbf{I}_t \frac{d\mathbf{L}}{d\theta} \mathbf{I}$$

Cylindrical Rotor, Cylindrical Stator

 $T = i_1 i_2 \frac{\partial M}{\partial \theta} : (L_{11}, L_{22} \text{ constant})$

15 / 26

Cylindrical Rotor, Salient Stator

$$T = \frac{1}{2}i_2^2 \frac{\partial L_{22}}{\partial \theta} + i_1 i_2 \frac{\partial M}{\partial \theta} : (L_{11} \text{ constant})$$

Salient Rotor, Cylindrical Stator

$$T = \frac{1}{2}i_1^2 \frac{\partial L_{11}}{\partial \theta} + i_1 i_2 \frac{\partial M}{\partial \theta}$$
: (L₂₂ constant)

17/26

Combination with Mechanical Systems:

Linear and Rotational Motion

Linear	Rotational
X: (m)	(θ): (radians)
v: Velocity (m/s)	ω : Angular Velocity (θ /s)
F: Force (N)	T: Torque (Nm)
m: Mass (kg)	J: Inertia (kgm^2)
F=m dv/dt	T=J d@/dt

Dynamic Equations: Ideal Spring

$F=k(\boldsymbol{x}-\boldsymbol{x}_0)$: No energy dissipation (~ldeal Inductor)

19/26

Dynamic Equations: Damping

$$F=Bv=Brac{dx}{dt}$$
 : Dissipates energy (~Resistance)

Overdamped, <u>underdamped</u> (similar to RLC circuits)

20/26

Dynamic Equations: Inertia

F = ma

٦0

Dynamic Equations: Mechanical Side

$$f_{mech} = M \frac{d^2 x}{d^2 t} + B \frac{dx}{dt}$$

$$+k(x-x_0)+f_{external}$$

Bose's Active Suspension System

Bose suspension system, Bose suspension will be mass produced 23/26

Bose Ride

Bose ride, Truck Driver comments-1, Truck Driver comments-2

Summary

- Multiply excited systems still tries to minimize total stored magnetic energy
- Derivative of self inductances and mutual inductance can work together or oppose each other.
- Magnetic forces interact with the mechanical systems and generate a system response

You can download this presentation from: <u>keysan.me/ee362</u>