EE-362 ELECTROMECHANICAL ENERGY CONVERSION-II

Real & Reactive Power, V-Curves of Synchronous Machines

Ozan Keysan

ozan.keysan.me

Office: C-113 • Tel: 210 7586

Synchronous Machines Power:

 $P = 3V_t I_a cos(\theta)$ Watt

Synchronous Machines Power:

 $P = 3V_t I_a cos(\theta)$ Watt

٥٢

$P = \frac{3V_t E_f sin(\delta)}{X_s}$

 R_a is neglected

What about Q (Reactive power)?

Direction of P, Q?

Power (P) flows from leading side to lagging side

Reactive Power (Q) flows from over-excited to underexcited side. I_{f} is large

Direction of P, Q?

Power (P) flows from leading side to lagging side

Reactive Power (Q) flows from over-excited to underexcited side.

Lagging pf generator supplies Q, lagging pf motor absorbs Q

Power-Reactive Power Directions

Direction of P, Q Summary

Standalone Operation:

Standalone Operation:

 P_{mech} and I_f must be controlled for constant V_t and f.

Automatically done by the AVR (Automatic Voltage Regulator)

Synchronous Generator Connected to Infinite Bus

Constant terminal voltage and speed

Synchronous Generator Connected to Infinite Bus

$$\overrightarrow{E_f} = \overrightarrow{V_t} \pm (R_a + jX_s)\overrightarrow{I_a}$$

- +: Generating
- —: Motoring

V_t : Constant (when connected to infinite bus)

Synchronous Generator Connected to Infinite Bus

There exists two main operating modes:

- . Constant Excitation, Variable Load (Circle Diagram)
- Constant Power, Variable Excitation

Constant Power, Variable Excitation

From geometry:
$$E_f sin(\delta) = X_s I_a cos(\theta) =$$
 Constant

 $E_{\!f}$ moves on horizontal line

For a generator connected to infinite bus:

Draw I_f vs I_a if the power kept constant (= constant $E_f sin(\delta)$. |Eflx|If| --Efz Jar XSID × ID 121 Field current 1 =) lagging Field current V => leading ID (employe 1ST J50 Aging 1 Gold current 2F1 162 Iço

For a generator connected to infinite bus:

Draw I_f vs I_a if the power kept constant (= constant $E_f sin(\delta)$.

16/30

V-Curves: Generating Mode

17/30

V-Curves: Motoring Mode

Phasor under constant power for the motoring mode

V-Curves: Motoring Mode

Different characteristics for motoring and generating modes

V curves for a synchronous motor with variable excitation

In motoring mode, excess I_{field} makes pf. leading.

Some Useful Animations

Infinite Bus Operation Animation

<u>V-curves of a synchronous motor</u>

Synchronous generator capability curves

Other Animations

Synchronous Condenser

A Synchronous motor operating at no-load

V curves for a synchronous motor with variable excitation

Used to deliver or to absorb VAR by controlling I_f

Can behave as a capacitor or an inductor!

Synchronous Condenser

Any difference compared to a motor?

Largest Synchronous Condenser

100 MVAr, 300 tons, built in 2014 by <u>WEG</u> for the Brasil Grid. <u>Manufacturing Video</u>

For curious students: <u>Rise of renewables leads to synchronous condenser</u> revival, <u>An old tool rediscovered to address new grid challenges</u>

Losses in Synchronous Machines

Operating Limits of Synchronous Machines

- . Stator Heating: $\propto I_a^2$
- . Rotor Heating: Limited I_f = Limited E_f
- Mechanical Power Input Limit
- . Stability Limit $\delta < 90$

Most cases it is much smaller for extra safety

Operating Limits of Synchronous Machines

Real Data

FIGURE 2 - Green area is normal operating range of a typical synchronous machine, yellow is abnormal but not damaging, and operating in red regional will cause damage or misoperation.

Our energy working for you.[™] www.cumminspower.com © 2009 Cummins Power Generation

Source:Cummins Generators