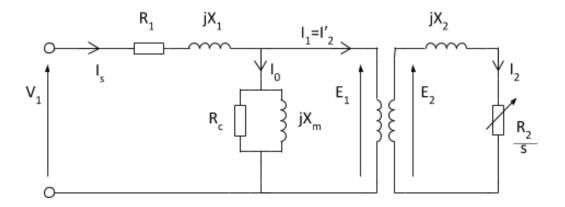
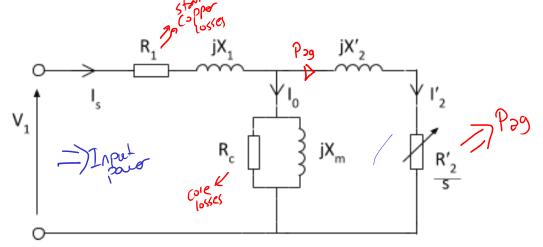
EE-362 ELECTROMECHANICAL ENERGY CONVERSION-II

Power and Torque in Induction Machines


Ozan Keysan

<u>keysan.me</u>

Office: C-113 • Tel: 210 7586


1/15

Equivalent Circuit of Induction Motors

The rotor can be referred to the stator side

Equivalent Circuit with Referred Rotor

Power Flow in Induction Motors

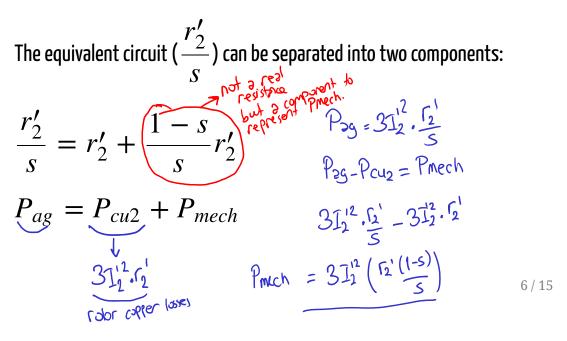
. Total Power:
$$P_{in} = 3V_1I_1cos(\theta)$$

. Stator Copper Loss: $P_{cu1} = 3I_1^2 r_1$

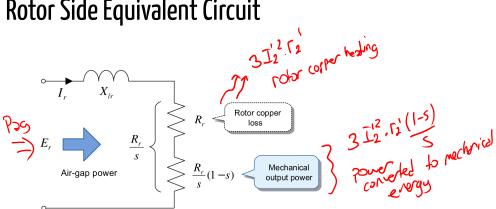
. Core Loss:
$$P_c = 3 \frac{E_1^2}{R_c} \cong 3 \frac{V_1^2}{R_c}$$

Power Flow in Induction Motors

Electrical Power Transferred to Rotor?

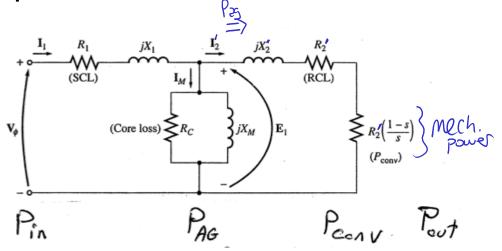

. Air-gap Power: $P_{ag} = P_{in} - P_{cu1} - P_c$

0


$$P_{ag} = 3I_2'^2 \frac{r_2'}{s}$$

Power Flow in Induction Motors

Not all the air-gap power dissipates as heat, most of it is converted to mechanical power


Rotor Side Equivalent Circuit

 $\left(\frac{r_2}{2}\right)$ is separated into two components $\Gamma_{2}^{1} + \frac{(1-5)}{5}, \Gamma_{2}^{1} = \frac{\Gamma_{2}^{1}}{5}$

S=1 (notor not rotading) $\Gamma_2' \rightrightarrows rotor \qquad \Gamma_2'(HS) = 0$ S=0 (rotor of synch, speed $f_2'=7$ $f_2'(1-s) = 0$ (open -circuit) 5 = 7/1552 =)

Equivalent Circuit of Induction Motors

Mechanical Power

Gap Power:
$$P_{ag} = 3I_2'^2 \frac{r_2'}{s}$$

Rotor Copper Loss: $P_{cu2} = 3I_1^2 r_2'$

 P_{cu2} can also be expressed in terms of P_{ag}

$$P_{cu2} = sP_{ag}$$

9/15

Mechanical Power

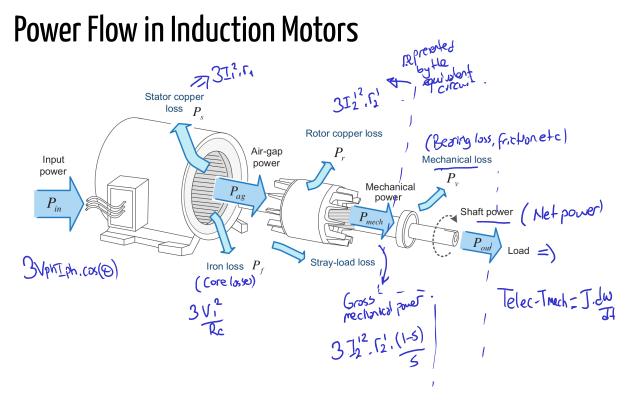
Gross Mech. Power = Gap Power - Rotor Copper Loss

Gap Power:
$$P_{ag} = 3I_{2}^{\prime 2} \frac{r_{2}^{\prime}}{s}$$

$$P_{mech} = 3I_{2}^{\prime 2} \frac{(1-s)}{s} r_{2}^{\prime}$$

$$P_{mech} = (1-s)P_{ag}$$

10/15


Mechanical Power

Gross mechanical power is the power converted into mechanical form

Net power is the useful mechanical energy to drive the mechanical load

Net Power = Gross Power - Rotational Losses

$$P_{net} = P_{mech} - P_{rot}$$

12/15

Efficiency

Output Power / Input Power

 $\eta = \frac{P_{out}}{P_{in}}$

Don't forget the rotational losses!