EE-362 ELECTROMECHANICAL ENERGY CONVERSION-II

Torque in Induction Motors

Ozan Keysan

keysan.me
Office: C-113 • Tel: 2107586

Mechanical Power

Linear Motion

Power $(W)=$ Force $(N) x$ Speed (m / s)
Rotational Motion
Power $(W)=$ Torque (Nm) x Rotational Speed (rad/s)
$P=T \omega \quad \rightarrow T=\frac{P}{\omega}$
ω

Can you guess a few applications that require high start-up torque?
Electric Cars: BMW i3.

Start-up Torque

Electric motor	BMW eDrive technology: Motor technology hybrid synchronous electric motor with inte electronics, charging unit and generator func recuperation	
Max output	$\mathrm{kW}(\mathrm{hp})$	$125(170)$
Rated output / at	$\mathrm{kW}(\mathrm{hp}) / \mathrm{rpm}$	$75(102) / 4800$
Torque / at	$\mathrm{Nm} / \mathrm{rpm}$	$250 / 0$
Recuperation output	kW	up to 50
High-voltage battery	V	353
Voltage	Ah	94
Battery capacity	kWh	$33.2 / 27.2$
Power output (gross / net)		Lithium-ion
Storage technology		

For curious students: BMW i3Specs,

Importance of Start-up Torque: BMW i3 vs WV Golf GTI

For curious students: Tesla Induction Motor Info, Reverse engineering a Tesla drivetrain, BMW i3 Specs,

Torque-Power Relation

$P_{\text {mech }}=3 I_{2}^{\prime 2} \frac{(1-s)}{s} r_{2}^{\prime}$
$T=\frac{P}{\omega}$
What is ω of the rotor?

$$
\omega_{r}=(1-s) \omega_{s}
$$

Torque-Power Relation

$$
\begin{aligned}
& P_{\text {mech }}=T(1 \nsucc s) \omega_{s}=3 I_{2}^{\prime 2} \frac{(1-s)}{s} r_{2}^{\prime} \\
& \left.T \omega_{s}=3 I_{2}^{\prime 2} \frac{r_{2}^{\prime}}{s}\right\} \text { Airgq pover }
\end{aligned}
$$

Generated Torque

$T=3 I_{2}^{\prime 2} \frac{r_{2}^{\prime}}{s} \frac{1}{\omega}$, which is equal to:
$S \omega_{s}$
$T=\frac{P_{a g}}{\omega_{s}} \quad$ or $\quad T=\frac{P_{m e c h}}{\omega_{r}}$
ω_{s} is the mechanical synchronous speed! $\quad \omega_{s}=\frac{2 \pi f_{e}}{(p / 2)}$

Generated Torque

We know:

- ω_{s}, if we know f_{e} and number of poles
- S : if we know rotor speed
- r_{2}^{\prime} from locked-rotor test

How can we calculate I_{2}^{\prime} ?

How can we calculate I_{2}^{\prime} ?

How can we calculate I_{2}^{\prime} ?

- Inaccurate but easy: Move parallel branch to source side

How can we calculate I_{2}^{\prime} ?

- Inaccurate but easy:Move parallel branch to source side
. More accurate: Calculate Thevenin equivalent as seen from the rotor side

Thevenin Equivalent Circuit

Torque

$$
T_{e}=\frac{3 V_{t h}^{2}}{\left(R_{t h}+\frac{r_{2}^{\prime}}{s}\right)^{2}+\left(X_{t h}+X_{2}^{\prime}\right)^{2}} \frac{r_{2}^{\prime}}{s \omega_{s}}
$$

If you're in a hurry, move the parallel branch to motor terminals and replace:
$V_{t h} \rightarrow \underline{V_{1}} \quad R_{t h} \rightarrow \underline{R_{1}} \quad X_{t h} \rightarrow \underline{X_{1}}$

Torque

$$
\begin{aligned}
& T_{e}=\frac{3 V_{1}^{2}}{\left(R_{1}+\frac{r_{2}^{\prime}}{s}\right)^{2}+\left(X_{1}+X_{2}^{\prime}\right)^{2}} \frac{r_{2}^{\prime}}{s}{ }_{=}^{\prime} \\
& V_{t h} \rightarrow V_{1} \quad R_{t h} \rightarrow R_{1} \quad X_{t h} \rightarrow X_{1}
\end{aligned}
$$

Torque Characteristics

Can you guess the waveform wit rotor speed?

Torque Graphs

$$
\begin{array}{cc}
s=1 & \Rightarrow T_{e}>0 \\
s=0 & T_{e}=0
\end{array}
$$

Typical Torque Curve of an Induction Motor

Torque characteristics

For small values of slip: Torque is proportional to slip
For large values of slip: Torque is inversely proportional to slip

Rated slip is usually smaller than 0.05

Start-up Torque

Substitute s=1 in the torque equation

$$
T_{\text {start }}=\frac{3 V_{t h}^{2}}{\left(R_{t h}+r_{2}^{\prime}\right)^{2}+\left(X_{t h}+X_{2}^{\prime}\right)^{2}} \frac{r_{2}^{\prime}}{\omega_{s}}
$$

Maximum Torque Point

Motor Speed in rpm
Speed-Torque Curve for a Three-Phase Induction Motor
$T_{e}=\frac{3 V_{t h}^{2}}{\left(R_{t h}+\frac{r_{2}^{\prime}}{s}\right)^{2}+\left(X_{t h}+X_{2}^{\prime}\right)^{2}} \frac{r_{2}^{\prime}}{s \omega_{s}}$

Maximum Torque Point

Maximum torque point = Maximum airgap power point

Maximum Torque Point

What is the condition for maximium airgap Power?

Maximum Power Transfer Theorem:
$\frac{r_{2}^{\prime}}{\widehat{S}}=\sqrt{R_{t h}^{2}+\left(X_{t h}+X_{2}^{\prime}\right)^{2}}$

Slip for maximum torque

Maximum Torque (substitutes)

$$
T_{\max }=3 \frac{0.5 V_{t h}^{2}}{\omega_{s}} \frac{1}{\left(R_{t h}+\sqrt{R_{t h}^{2}+\left(X_{t h}+X_{2}^{\prime}\right)^{2}}\right.}
$$

Notice that $s_{\max T}$ depends on r_{2}^{\prime} but $T_{\text {max }}$ doesn't.

