EE-362 ELECTROMECHANICAL ENERGY CONVERSION-II

Torque in Induction Motors

Ozan Keysan

<u>keysan.me</u>

Office: C-113 • Tel: 210 7586

Mechanical Power

Linear Motion

Power(W) = Force (N) x Speed (m/s)

Rotational Motion

Power(W) = Torque (Nm) x Rotational Speed (rad/s) $P = T\omega \rightarrow T = \frac{P}{\omega}$

Can you guess a few applications that require high start-up torque?

Electric Cars: <u>BMW i3</u>

Start-up Torque

Electric motor		
Motor technology		BMW eDrive technology:
		hybrid synchronous electric motor with inte
		electronics, charging unit and generator func
		recuperation
Max output	kW (hp)	125 (170)
Rated output / at	kW (hp) / rpm	75 (102) / 4800
Torque / at	Nm / rpm	250/0
Recuperation output	kW	up to 50
High-voltage battery		
Voltage	V	353
Battery capacity	Ah	94
Power output (gross / net)	kWh	33.2/27.2
Storage technology		Lithium-ion

For curious students: <u>BMW i3 Specs</u>,

Importance of Start-up Torque: <u>BMW i3 vs WV Golf GTI</u>

For curious students: <u>Tesla Induction Motor Info</u>, <u>Reverse engineering a Tesla</u> <u>drivetrain</u>, <u>BMW i3 Specs</u>,

Torque-Power Relation

$$P_{mech} = 3I_2^{\prime 2} \frac{(1-s)}{s} r_2^{\prime}$$
$$T = \frac{P}{\omega}$$

 ω

What is ω of the rotor?

$$\omega_r = (1-s)\omega_s$$

Torque-Power Relation

$$P_{mech} = T(1-s)\omega_s = 3I_2'^2 \frac{(1-s)}{s}r_2'$$

$$T\omega_s = 3I_2'^2 \frac{r_2'}{s} \int Airgs power$$

Generated Torque

$$T = 3I_{2}^{\prime 2} \frac{r_{2}^{\prime}}{s} \frac{1}{\omega_{s}}$$
, which is equal to:
$$T = \frac{P_{ag}}{\omega_{s}} \quad \text{or} \quad T = \frac{P_{mech}}{\omega_{r}}$$

 ω_s is the mechanical synchronous speed!

$$\omega_s = \frac{2\pi f_e}{(p/2)}$$

8/23

Generated Torque

$$T = 3\overline{I_2'^2} \frac{r_2'}{s} \frac{1}{\omega_s} \qquad \forall$$

We know:

- ω_s , if we know f_e and number of poles
- *s*: if we know rotor speed
- r_2' from locked-rotor test

How can we calculate I_2' ?

How can we calculate I_2' ?

How can we calculate I_2' ?

Inaccurate but easy: Move parallel branch to source side

How can we calculate I_2' ?

- Inaccurate but easy: Move parallel branch to source side
- More accurate: Calculate Thevenin equivalent as seen from the rotor side

Thevenin Equivalent Circuit

11/23

Torque

$$T_e = \frac{3V_{th}^2}{(R_{th} + \frac{r_2'}{s})^2 + (X_{th} + X_2')^2} \frac{r_2'}{s\omega_s}$$

If you're in a hurry, move the parallel branch to motor terminals and replace:

$$V_{th} \rightarrow \underline{V}_1 \quad R_{th} \rightarrow \underline{R}_1 \quad X_{th} \rightarrow X_1$$

Torque

Torque Characteristics

Can you guess the waveform wrt rotor speed?

Typical Torque Curve of an Induction Motor

Torque characteristics

For small values of slip: Torque is proportional to slip

- For large values of slip: Torque is inversely proportional to slip
- Rated slip is usually smaller than 0.05

Start-up Torque

Substitute s=1 in the torque equation

$$T_{start} = \frac{3V_{th}^2}{(R_{th} + r_2')^2 + (X_{th} + X_2')^2} \frac{r_2'}{\omega_s}$$

Maximum Torque Point

Speed-Torque Curve for a Three-Phase Induction Motor

$$T_e = \frac{3V_{th}^2}{(R_{th} + \frac{r'_2}{s})^2 + (X_{th} + X'_2)^2} \frac{r'_2}{s\omega_s}$$

19/23

Maximum Torque Point

Maximum torque point = Maximum airgap power point

Maximum Torque Point

What is the condition for maximium airgap Power?

Maximum Power Transfer Theorem:

$$\frac{r_2'}{s} = \sqrt{R_{th}^2 + (X_{th} + X_2')^2}$$

Slip for maximum torque

$$s_{\underline{maxT}} = \frac{(r'_2)}{\sqrt{R_{th}^2 + (X_{th} + X'_2)^2}}$$

Maximum Torque (substitute s)

$$T_{max} = 3 \frac{0.5V_{th}^2}{\omega_s} \frac{1}{(R_{th} + \sqrt{R_{th}^2 + (X_{th} + X_2')^2})}$$

Notice that s_{maxT} depends on r'_2 but T_{max} doesn't.

22/23