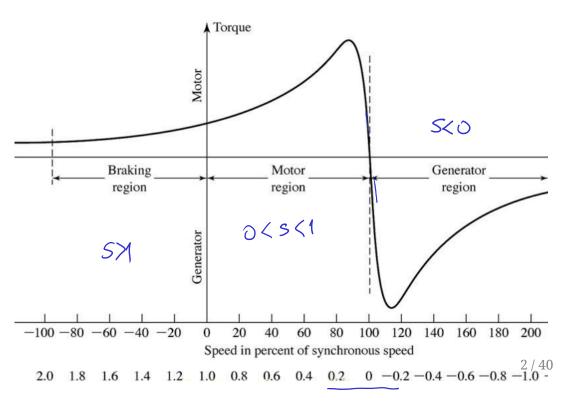
EE-362 ELECTROMECHANICAL ENERGY CONVERSION-II

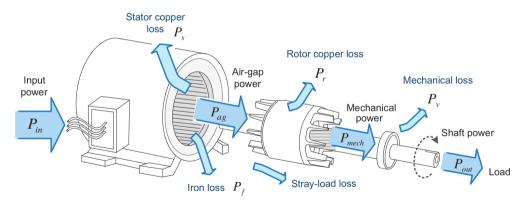

Speed Control Techniques for Induction Machines

Ozan Keysan

<u>keysan.me</u>

Office: C-113 • Tel: 210 7586

Full Operating Range of Induction Machines

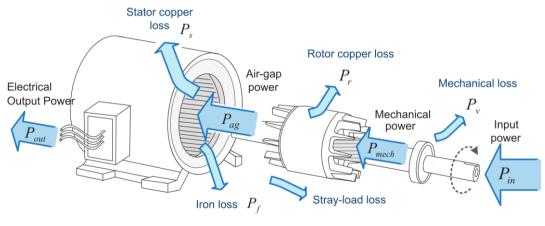

Operation Modes of Induction Motors

- 1- Motoring
- 2- Generating
- 3- Braking (Plugging)

Motoring

Slip: 0 < s < 1

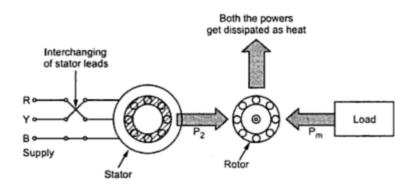
Power Flow: Electrical to Mechanical



Generating

Slip: s < 0

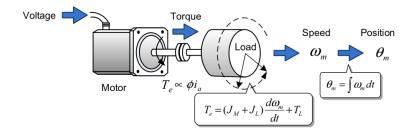
Power Flow: Mechanical to Electrical



Braking (Plugging)

Slip: s > 1

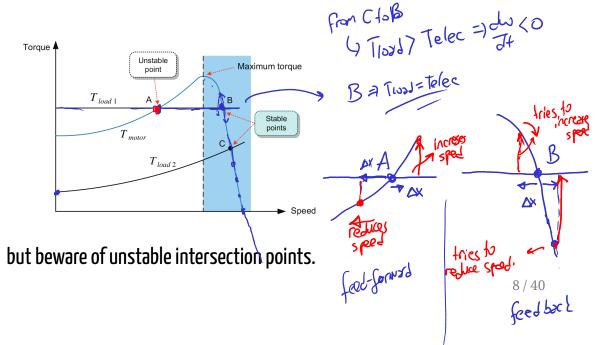
Power Flow: Mechanical+Electrical to Heat



Plugging obtained by interchanging two stator phases

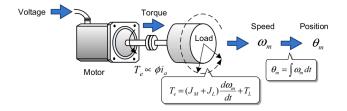
Machine Dynamics

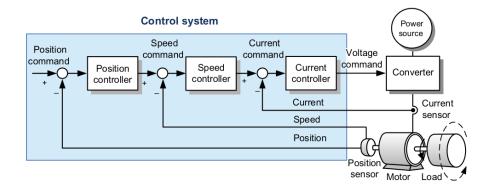
Torque Balance Equation


$$T_{elec} - T_{load} = J \frac{d\omega}{dt} \qquad \begin{array}{c} F = m \underbrace{J} V \\ \underbrace{J} \\$$

7 / 40

If there is no difference between the electrical torque and load torque, the machine operates at the steady-state

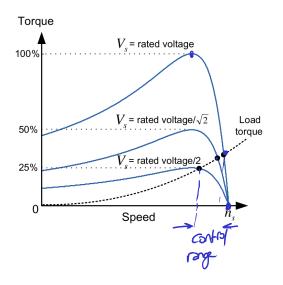

(i.e. the intersection point at between the motor torque line and the load torque line).



Speed Control Problems

- · Load constant, speed reference is changed
- You want the speed constant, but load torque is varying
- Both speed reference and load variable
 - We need to modify machine characteristic

Closed Loop Control of an Electrical Machine

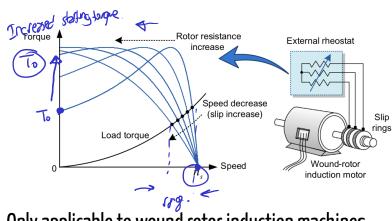


10/40

Speed Control Methods

Variable Voltage Control: $T_e \, \propto \, V^2$

Control is limited to a small range as Ns is constant

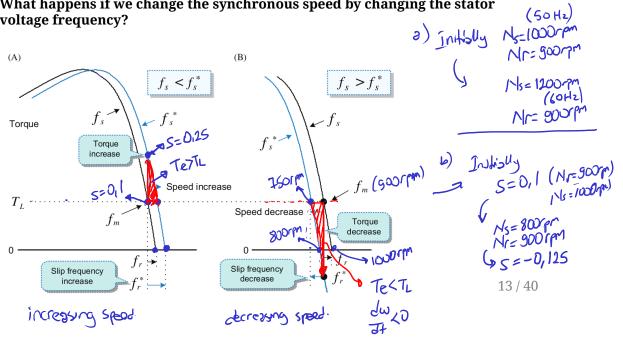


 $11 \, / \, 40$

Speed Control Methods

Rotor Resistance Control:

Not very efficient, but can create a large startup torque



Only applicable to wound rotor induction machines

Speed Control Methods

Variable Stator Voltage Frequency

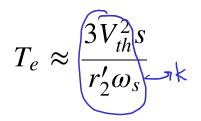
What happens if we change the synchronous speed by changing the stator voltage frequency?

Linear Approximation of Torque

Accurate torque expression

Valid for all values of slip

$$T_{e} = \frac{3V_{th}^{2}}{(R_{th} + \frac{r_{2}'}{s})^{2} + (X_{th} + X_{2}')^{2}} (s_{\omega_{s}}')^{2}$$


However, under steady-state conditions, slip is usually very small (<5%)

Linear Approximation of Torque

s < 0.05

$$\frac{r_2'}{s} >> R_{th}, X_{th}, X_2'$$

Torque equation becomes

15 / 40

Linear Approximation of Torque

$$T_e \approx \frac{3V_{th}^2 s}{r_2' \omega_s}$$

 $T_e \approx ks$

(only valid for small values of s)

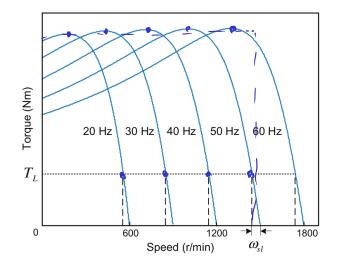
Variable Stator Voltage Frequency

What happens if we reduce f, with constant V?

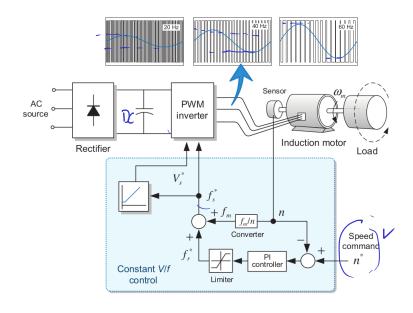
 $E = 4.44 f_s N_s \Phi$ Motor core starts saturating which is not desirable!

 $E = N. d\phi$

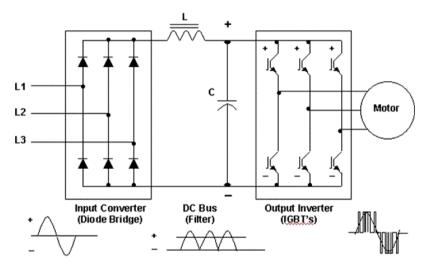
Variable Stator Voltage Frequency


Alternatively, if the frequency is increased by keeping the voltage constant, motor cannot produce enough torque.

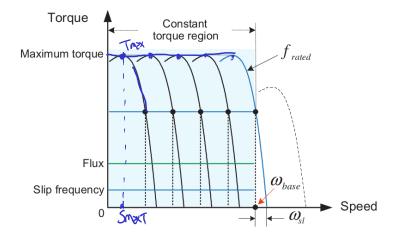
Reduction of torque under constant voltage with increasing frequency


18 / 40

Change the voltage with stator frequency to keep the flux constant


Stator voltage is varied with frequency to eliminate torque reduction $_{\ 20\,/\,40}$

Use a Variable Voltage-Frequency Drive (VFD)


21/40

Use a Variable Voltage-Frequency Drive (VFD)

For curious students: <u>Variable Frequency Drive</u>, <u>What is VFD?</u>, <u>Basics of</u> <u>the Inverter</u>, <u>How Inverters Work?</u> 22 / 40

Constant torque can be achieved during acceleration

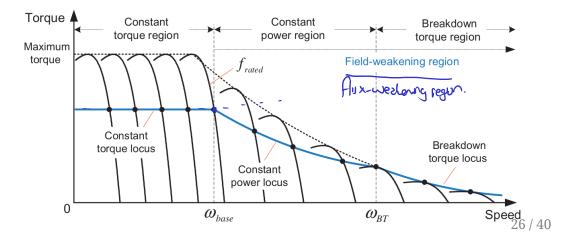
If we set the slip to the point where max torque is produced (s_{max-T}), the machine can be accelerated quickly.

23/40

Tesla Roadster vs Bugatti Chiron

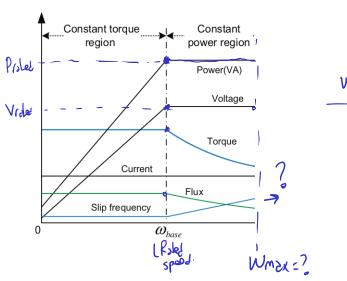
1.9s	0-60mph	2.4s
8.8s	1/4 Mile	9.8s
4.2s	0-100mph	5s
250+mph	Top Speed	261mph
620mi	Range	286mi
(2 giant people squashed)	Seating	2
\$200,000	Price	\$3,000,000

Tesla Insane Mode, Tesla Insane Mode- Slow Motion, Tesla Model S P100D,Tesla Model S Plaid24 / 40


O EVBite.com	Tesla Model S Plaid	Lucid Air Grand Touring	Porsche Taycan Turbo S
	196° Lx 77° Wx 57° H	TBD	195° L x 77' W x 54° H
0-60 MPH	< 2 s	3 s	2.6 s
Top Speed	200 mph	168 mph	161 mph
Range	520+ mi	517 mi	192 mi
Battery	TBD	113 kWh	93.4 kWh
Power	<u>1,100 hp</u>	800 hp	750 hp
Cargo Space	28 cu ft	26 cu ft	16 cu ft
Seats	5	5	5
Charging	TBD	300+ kWh	270 kWh
\$ MSRP	\$139,990	\$139,000	\$185,000

<u>Tesla Insane Mode, Tesla Insane Mode- Slow Motion, Tesla Model S P100D,</u> <u>Tesla Model S Plaid</u>

Flux Weakening Range


Voltage cannot be increased beyond the rated voltage

If the torque is kept constant at high speeds, power limit will be exceeded.

Flux Weakening Range

Operation of an induction machine is determined by: phase voltage, magnetic flux, phase current, cooling capability, mechanical constraints

P=T.W +1 (constat V/f wafar V $P = T \omega$

27/40