EE-463 STATIC POWER CONVERSION-I

Basic Concepts

Ozan Keysan
keysan.me

Office: C-113 • Tel: 2107586

Let's start with a simple DC-DC Converter

Let's start with a simple DC-DC Converter

Can you design this converter?

Resistive Voltage Divider

Series Regulator (Transistor in linear mode)

Efficiency $=50 \%$!

Use an Ideal (Two Position) Switch

With L-C (Low-Pass) Filter

Notice high efficiency

A more realistic example (Buck converter)

Generating AC: Single-Phase Inverter

Common Points

Common Points

Avoid lossy elements!

Ideal Switch

Ideal Switch

Which factors make a switch ideal?

Ideal Switch

Ideal Switch

. No voltage drop in the on-state

Ideal Switch

. No voltage drop in the on-state
. Zero switching time

Ideal Switch

. No voltage drop in the on-state

- Zero switching time
. No leakage current in the off-state

Ideal Switch

. No voltage drop in the on-state

- Zero switching time
- No leakage current in the off-state
- Infinite breakdown voltage and current capacity

What happens if you turn off a inductive load?

What happens if you turn off a inductive load?

Or
What happens if turn-on with a capacitive load?

Practical Switch

Practical Switch

. Conduction losses (voltage drop, leakage current)

Practical Switch

. Conduction losses (voltage drop, leakage current)
. Finite switching time

Practical Switch

. Conduction losses (voltage drop, leakage current)
. Finite switching time
. Switching losses

Practical Switch

. Conduction losses (voltage drop, leakage current)
. Finite switching time
. Switching losses

- Limited current and voltage capacity

Practical Switch

. Conduction losses (voltage drop, leakage current)
. Finite switching time
. Switching losses

- Limited current and voltage capacity
. Limited dv/dt and di/dt rating

General Rules in Power Electronics

General Rules in Power Electronics

Do not short circuit voltage sources (Unless $\mathrm{V}=0$)

General Rules in Power Electronics

Do not short circuit voltage sources (Unless $\mathrm{V}=0$)
Do not open (turn-off) current sources (Unless l=0)

General Rules in Power Electronics

Do not short circuit voltage sources (Unless $\mathrm{V}=0$)
Do not open (turn-off) current sources (Unless l=0)
Inductors behave like current sources

General Rules in Power Electronics

Do not short circuit voltage sources (Unless $\mathrm{V}=0$)
Do not open (turn-off) current sources (Unless l=0)
Inductors behave like current sources
Capacitors behave like voltage sources

Inductors in Steady-State Operation

Inductors in Steady-State Operation

a.k.a. Inductor Volts-Seconds Balance

Average value of inductor voltage is zero in steady-state
(Positive and negative areas of inductor voltage cancel each other)

Capacitors in Steady-State Operation

a.k.a. Capacitor Charge (or Ampere-seconds) Balance

Capacitors in Steady-State Operation

a.k.a. Caparitor Charge (or Ampere-seconds) Balance
(Positive and negative areas of capacitor current cancel each other)

Performance Parameters for Waveforms

Performance Parameters for Waveforms

i.e. How do you decide an output is better than another?

For example, can you tell which one of the DC supply voltage is better?

- $5+0.5 \sin (x)$.

$\cdot 5+0.25 \sin (x)+0.25 \sin (10 * x)$.

Or can you tell which "more sinusoidal"?

Or can you tell which "more sinusoidal"?

$-\sin (\underline{x})+0.3 \sin (3 x)$.

Or can you tell which "more sinusoidal"?

- $\sin (\underline{x})+0.3 \sin (3 \underline{x})$

- $\sin (\underline{x})-0.3 \sin (3 \underline{x})$
- $\sin (\underline{x})-0.3 \sin (3 \underline{x})$

RMS

RMS(Root Mean Square)

RMS(Root Mean Square)
$I_{R M S}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) d t}$

RMS(Root Mean Square)
$I_{R M S}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) d t}$
What is the physical meaning?

RMS(Root Mean Square)
$I_{R M S}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) d t}$
What is the physical meaning?
Average power dissipated if connected to 1Ω resistor

RMS (Root Mean Square)

What is the RMS of a signal with harmonics?
$I=I_{1}+I_{2}+I_{3} \ldots$

RMS (Root Mean Square)

What is the RMS of a signal with harmonics?
$I=I_{1}+I_{2}+I_{3} \ldots$
$I_{R M S}=\sqrt{I_{1_{R M S}}^{2}+I_{2_{R M S}}^{2}+I_{3_{R M S}}^{2} \cdots}$

Distortion Factor

Distortion Factor

Ratio of Fundamental RMS to Total RMS

Distortion Factor

Ratio of Fundamental RMS to Total RMS
$D F=\frac{I_{1_{\text {RMS }}}}{I_{s_{R M S}}}$
Quick Question: What is the DF for a square wave?

Displacement Power Factor

Displacement Power Factor

Power factor for the fundamental component
i.e. $\mathrm{DPF}=\cos (\phi)$, where ϕ is the phase difference between the FUNDAMENTAL components of V and I .
drawing
(True) Power Factor

(True) Power Factor

Ratio of Real Power (P) to Apparent Power ((S)
$P F=\frac{P}{S}$
True Power Factor includes all harmonics, whereas DPF includes only the fundamental component.
(True) Power Factor
For perfect sine wave
(True) Power Factor
For perfect sine wave
$D F=1$ and $D P F=P F$
(True) Power Factor
For perfect sine wave
$D F=1$ and $D P F=P F$
For distorted waves
(True) Power Factor
For perfect sine wave
$D F=1$ and $D P F=P F$
For distorted waves
DF <1 and $\mathrm{PF}<\mathrm{DPF}$

For this waveform:

displacement power factor (DPF) $=1$
but true power factor is <1

THD

THD (Total Harmonic Distortion)

THD (Total Harmonic Distortion)

Ratio of the RMS of the harmonics (excluding the fundamental) to RMS of the fundamental component

THD (Total Harmonic Distortion)

Ratio of the RMS of the harmonics (excluding the fundamental) to RMS of the fundamental component
$T H D=\frac{\sqrt{\sum_{h=2}^{\infty} I_{h}^{2}}}{I_{1}}$

THD (Total Harmonic Distortion)

Ratio of the RMS of the harmonics (excluding the fundamental) to RMS of the fundamental component
$T H D=\frac{\sqrt{\sum_{h=2}^{\infty} I_{h}^{2}}}{I_{1}}$
i.e. ratio of power in harmonics to power in the fundamental component

THD (Total Harmonic Distortion)

Very important for power quality, and limited by many standards.

THD (Total Harmonic Distortion)

Very important for power quality, and limited by many standards.

Used to be less than 5\% for LV

THD (Total Harmonic Distortion)

Very important for power quality, and limited by many standards.

Used to be less than 5\% for LV
In 2014, it was increased to 8%. Why?

THD (Total Harmonic Distortion)

$$
T H D=\frac{\sqrt{\sum_{h=2}^{\infty} I_{h}^{2}}}{I_{1}}
$$

THD (Total Harmonic Distortion)

$$
T H D=\frac{\sqrt{\sum_{h=2}^{\infty} I_{h}^{2}}}{I_{1}}=\frac{\sqrt{I_{s}^{2}-I_{1}^{2}}}{I_{1}}
$$

THD (Total Harmonic Distortion)

$$
T H D=\frac{\sqrt{\sum_{h=2}^{\infty} I_{h}^{2}}}{I_{1}}=\frac{\sqrt{I_{s}^{2}-I_{1}^{2}}}{I_{1}}
$$

Distortion factor can be expressed in terms of THD

$$
D F=\frac{1}{\sqrt{1+T H D^{2}}}
$$

Quick Question: Derive the THD of a square waveform

You can download this presentation from: keysan.me/ee463.

