EE-463 STATIC POWER CONVERSION-I

Power Semiconductor Devices

Ozan Keysan

<u>keysan.me</u>

Office: C-113 • Tel: 210 7586

Diode

Power Diode (>50 A)

Ideal Diode

Ideal Diode

V-I Characteristics

Ideal Diode

V-I Characteristics

Figure 1 I-V Characteristics of an Ideal Diode

Important Parameters

Important Parameters

. Forward Voltage

Important Parameters

- . Forward Voltage
- Reverse Break-down Voltage

Important Parameters

- . Forward Voltage
- . Reverse Break-down Voltage
- . On-resistance

Important Parameters

- . Forward Voltage
- . Reverse Break-down Voltage
- . On-resistance
- . Turn-on, turn-off times (forward, reverse-recovery)

Practical Diode: V-I Characteristics

A few Data-sheets

- <u>STTH6012, 1200V, 60A Diode</u>
- <u>FERD20S100S, 100V, 20 A Diode</u>

Reverse Biased Diode

More info

Eriksson, Fundamentals of Power Electronics, Ch4

Forward Biased Diode

More info

Diode Switching Waveforms

Turn-on transient

Diode Switching Waveforms

Turn-off transient

Diode Switching Waveforms

Turn-off transient

Reverse current is required to remove carrier charges

Reverse Recovery

Diode conducts a reverse current during turn-off

Figure 1 Reverse Recovery Characteristics of the Diode

 t_{rr} : Reverse recovery time, I_{rr} : Reverse recovery current $_{14/53}$

Reverse Recovery

Softness Factor

<u>Reverse recovery</u>

Fast diode vs Slow Diode

• Standard Recovery

- . Standard Recovery
- . Fast (ultra-fast) Recovery

- . Standard Recovery
- . Fast (ultra-fast) Recovery
- <u>Schottky Diode</u>
 - Majority carrier (due to metal layer)
 - $_{\circ}$ No recovered charge, $t_{rr}=0$
 - Limited to low voltage (<100V)

Part number	Rated max voltage	Rated avg current	V_F (typical)	$t_r(max)$
Fast recovery re	ctifiers			
1N3913	400V	30A	1.1V	400ns
SD453N25S20PC	2500V	400A	2.2V	$2\mu s$
Ultra-fast recov	ery rectifiers			
MUR815	150V	8A	0.975V	35ns
MUR1560	600V	15A	1.2V	60ns
RHRU100120	1200V	100A	2.6V	60ns
Schottky rectifi	ers			
MBR6030L	30V	60A	0.48V	
444CNQ045	45V	440A	0.69V	
30CPQ150	150V	30A	1.19V	

Part number	Rated max voltage	Rated avg current	V_F (typical)	$t_r(max)$
Fast recovery re	ctifiers			
1N3913	400V	30A	1.1V	400ns
SD453N25S20PC	2500V	400A	2.2V	$2\mu s$
Ultra-fast recov	ery rectifiers			
MUR815	150V	8A	0.975V	35ns
MUR1560	600V	15A	1.2V	60ns
RHRU100120	1200V	100A	2.6V	60ns
Schottky rectifi	ers			
MBR6030L	30V	60A	0.48V	
444CNQ045	45V	440A	0.69V	
30CPQ150	150V	30A	1.19V	

What is the relation between V_{max} and V_F ?

Conduction Losses

Conduction Losses

. Increases with current

Conduction Losses

. Increases with current

Switching Losses

Conduction Losses

. Increases with current

Switching Losses

. Increases with turn-on, turn-off-time

Conduction Losses

. Increases with current

Switching Losses

- . Increases with turn-on, turn-off-time
- . Increases with switching frequency

Switching Losses

Linearized

Extra Reading Material

- <u>Fast, Faster, Fastest</u>
- <u>Power Losses, Thermal Considerations</u>
- <u>Calculation of conduction losses in a power rectifier</u>

Thyristor

A diode with a gate terminal!

Four layer PNPN semiconductor (and two-transistor equivalent circuit)

A diode that you can delay on-state with gate signal(pulse)

A diode that you can delay on-state with gate signal(pulse)

but no control while turning-off

Thyristor

Thyristor: Controlled Rectifier

Thyristor: Controlled Rectifier

More on thyristor rectifiers next week!

• Has the highest current and voltage rating among other devices

- Has the highest current and voltage rating among other devices
- Slow switching device (eg compared to MOSFET)

- Has the highest current and voltage rating among other devices
- Slow switching device (eg compared to MOSFET)
- Latching switch (can be turned on by Ig, but cannot be turned off)

V-I Characteristics

- Reverse Blocking
- Forward Blocking
- Forward Conducting

V-I Characteristics

V-I Characteristics

. SCR (Silicon Controlled Rectifier)

- . SCR (Silicon Controlled Rectifier)
- . TRIAC, DIAC

- . SCR (Silicon Controlled Rectifier)
- . TRIAC, DIAC
- . GTO (Gate Turn-Off Tyhristor)

GTOs

GTOs

4500 V, 3000 A GTO

. Used at very <u>high power levels</u>

GTOs

- . Fully contrallable switch
- . Can be turned-on and turned-off
- . Turn-on achieved by positive current pulse
- . Turn-off achieved by negative current pulse

TRIAC

- . Bi-directional device
- TRIACs can be triggered by positive or negative current

TRIAC: Two anti-parallel thyristors

Datasheet Exercise

• 5<u>0 A - 1200 V automotive grade SCR Thyristor</u>

Metal-Oxide Semiconductor Field-Effect Transistor

Metal-Oxide Semiconductor Field-Effect Transistor

MOSFET: P-Channel Depletion Type

V-I Characteristics

To be discussed more in detail throughout the semester 40/53

Body Diode

Equivalent Circuit

Cgs: large, constant

Cgd: small, highly nonlinear

Cds: intermediate, nonlinear

MOSFET Comparison

Part number	Rated max voltage	Rated avg current	R on	Q_g (typical)
IRFZ48	60V	50A	0.018Ω	110nC
IRF510	100V	5.6A	0.54Ω	8.3nC
IRF540	100V	28A	0.077Ω	72nC
APT10M25BNR	100V	75A	0.025Ω	171nC
IRF740	400V	10A	0.55Ω	63nC
MTM15N40E	400V	15A	0.3Ω	110nC
APT5025BN	500V	23A	0.25Ω	83nC
APT1001RBNR	1000V	11A	1.0Ω	150nC

• Fast device (ten to hundreds kHz)
- Fast device (ten to hundreds kHz)
- Easy to drive

- Fast device (ten to hundreds kHz)
- Easy to drive
- Blocking voltage is usually <500 V

- Fast device (ten to hundreds kHz)
- Easy to drive
- Blocking voltage is usually <500 V
- Positive Temperature coefficient (easy to parallel)

- Fast device (ten to hundreds kHz)
- Easy to drive
- Blocking voltage is usually <500 V
- Positive Temperature coefficient (easy to parallel)
- Body diode can conduct the full rated current (but usually slow)

- Fast device (ten to hundreds kHz)
- Easy to drive
- Blocking voltage is usually <500 V
- Positive Temperature coefficient (easy to parallel)
- Body diode can conduct the full rated current (but usually slow)
- Switching time determined by charging/discharging gate capacitors

Insulated-Gate Bipolar Transistor

Insulated-Gate Bipolar Transistor

<u>IGBT</u>

IGBT, when to use them?

IGBT or MOSFET?

Slower compared to MOSFET (<20-30kHz)

Slower compared to MOSFET (<20-30kHz)

. Lower on-resistance

- Slower compared to MOSFET (<20-30kHz)
- . Lower on-resistance
- . Can withstand higher voltages (upto 1700V)

- Slower compared to MOSFET (<20-30kHz)
- . Lower on-resistance
- . Can withstand higher voltages (upto 1700V)
- . Possible to parallel for new generations

- Slower compared to MOSFET (<20-30kHz)
- Lower on-resistance
- . Can withstand higher voltages (upto 1700V)
- . Possible to parallel for new generations
- Probably best choice for 500-1700V, kWs of applications

IGBT Comparison

Part number	Rated max voltage	Rated avg current	V_F (typical)	t_f (typical)
Single-chip dev	ices			
HGTG32N60E2	600V	32A	2.4V	0.62µs
HGTG30N120D2	1200V	30A	3.2A	0.58µs
Multiple-chip p	ower modules			
CM400HA-12E	600V	400A	2.7V	0.3µs
CM300HA-24E	1200V	300A	2.7V	0.3µs

To be discussed more in detail throughout the semester

Data-Sheet Exercise

• IGBT, H series 1200 V, 40 A high speed

GaN

<u>Advancing power supply solutions through the promise of GaN</u>

Power GaN Opens New Applications

SiC

<u>Next Generation Power Semiconductors: What is GaN / SiC?</u>

You can download this presentation from: <u>keysan.me/ee463</u>