EE-463 STATIC POWER CONVERSION-I

A Few Important Converters

Ozan Keysan

<u>keysan.me</u>

Office: C-113 • Tel: 210 7586

What's the name of this rectifier?

What's the name of this rectifier?

6-pulse (Diode or Thyristor) Rectifier

Identical to 3-phase full bridge rectifier

What's the name of this rectifier?

What's the name of this rectifier?

12-pulse Rectifier

Reading: Power Electronics, Lander, Section 2-9

12-pulse Rectifier: Source Side

Two secondary windings: Delta and Wye connected 6/28

How can you obtain 24 pulse, or 48 pulse?

How can you obtain 24 pulse, or 48 pulse?

Phase Shifting Transformer

How can you obtain 24 pulse, or 48 pulse?

Phase Shifting Transformer

12-pulse Rectifier: Devices

What is the rated device voltages compared to output voltage?

12-pulse Rectifier

Used in HVDC systems with series devices

12-pulse Rectifier: Output

Can you plot the voltage waveform?

12-pulse Rectifier: Output

Can you plot the voltage waveform?

12-pulse Rectifier: Input

12-pulse Rectifier: Input

11/28

. 6 pulse:

. 6 pulse: 5th, 7th harmonics (no triple harmonics)

- . 6 pulse: 5th, 7th harmonics (no triple harmonics)
- . 12 pulse:

- . 6 pulse: 5th, 7th harmonics (no triple harmonics)
- . 12 pulse: 11th, 13 th harmonics

 $h=n*12\pm 1$

12/28

- . 6 pulse: 5th, 7th harmonics (no triple harmonics)
- . 12 pulse: 11th, 13 th harmonics

 $h=n*12\pm 1$

. 18 pulse:

- . 6 pulse: 5th, 7th harmonics (no triple harmonics)
- . 12 pulse: 11th, 13 th harmonics

 $h=n*12\pm 1$

. 18 pulse: 17th, 19th

- . 6 pulse: 5th, 7th harmonics (no triple harmonics)
- . 12 pulse: 11th, 13 th harmonics
- $h=n*12\pm 1$
 - . 18 pulse: 17th, 19th
 - 24 pulse:

. 6 pulse: 5th, 7th harmonics (no triple harmonics)

- . 12 pulse: 11th, 13 th harmonics
- $h=n*12\pm 1$
 - . 18 pulse: 17th, 19th
 - . 24 pulse: 23rd, 25th

	Harmonic order (h)		7	-11	13	17	19	23	25	THD
	6-pulse without line reactor (Stiff source)	80.0%	58.0%	18.0%	10.0%	7.0%	6.0%	5.0%	2.5%	101.5%
	6-pulse with 2-3% line reactor	40.0%	15.0%	5.0%	4.0%	4.0%	3.0%	2.0%	2.0%	43.6%
	6-pulse with 5% line reactor	32.0%	9.0%	4.0%	3.0%	3.0%	2.0%	1.5%	1.0%	33.9%
ł	6-pulse with line tarmonic filter (LHF)	2.5%	2.5%	2.0%	2.0%	1.5%	1.0%	0.5%	0.5%	4.9%
	12-pulse	3.7%	1.2%	6.9%	3.2%	0.3%	0.2%	1.4%	1.3%	8.8%
	18-pulse	0.6%	0.8%	0.5%	0.4%	3.0%	2.2%	0.5%	0.3%	3.9%

NOTE: Relative short circuit ratio of the power system is assumed to be between 20 to 50. For a relative short circuit ratio higher than 50 (strong supply system), the values in table above will be higher.

HVDC Rectifiers

How does it look like?

12-pulse thyristor converter for Pole 2 of the HVDC Inter-Island between the North and South Islands of New Zealand (± 350kV).

How does it look like?

12-pulse thyristor converter for Pole 2 of the HVDC Inter-Island between the North and South Islands of New Zealand.

- ABB HVDC
- <u>Siemens HVDC</u>
- <u>Thyristors The heart of HVDC</u>

Even more pulses?

Even more pulses?

24 Pulse

Figure 6. Using zig-zag transformer for reducing systems' harmonic content

Even more pulses?

48 Pulse

Drawing

Frequency Conversion:

Frequency Conversion:

Cycloconverters
Frequency Conversion:

Cycloconverters

Converts AC to (lower frequency) AC

Frequency Conversion:

Cycloconverters

Converts AC to (lower frequency) AC

No need to have DC-link

Frequency Conversion:

Cycloconverters

Converts AC to (lower frequency) AC

No need to have DC-link

Used in MW-sized motor drives (ships, mines, traction)

- <u>ABB Brochure</u>, <u>discontinued</u>
- <u>Siemens Sinamics</u>

Reading: Power Electronics, Lander, Chapter 5

Simplest Case

Single Phase to Single Phase

Simplest Case

Single Phase to Single Phase

22 / 28

Three Phase to Single Phase

Three Phase to Single Phase (with 6 pulse)

Three Phase to Single Phase (with 12 pulse)

Three Phase to Three Phase (6 pulse)

Figure 5

Three Phase to Three Phase (12 Pulse!)

You can download this presentation from: <u>keysan.me/ee463</u>