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Thermal Design in Power Electronics
Expected Life
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On the Machine (Load) Side
Losses are dependent on temperature and temperature on losses
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On the Machine (Load) Side
Losses are dependent on temperature and temperature on losses

Copper Losses  Resistance

For copper (at 20 C)

∝

R(T) = R( )(1 + αΔT)T0

α = 0.003862 K −1
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Methods for Thermal Analysis
From di�cult to easy

Experimental

CFD (Computational Fluid Dynamics)

FEA (Finite Element Analysis)

Lumped Parameter Model
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Thermal CFD
Requires intense computation
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Thermal FEA
No air-�ow
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Thermal Lumped Parameter Network
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Basics of Heat Transfer
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Lumped Thermal Network
Thermal systems can be represented as electric circuits
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Lumped Thermal Network
Thermal systems can be represented as electric circuits

Temperature = Voltage

Heat Input = Current Source

Thermal Conductivity = Electrical Conductivity

Heat Capacity = Capacitance
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Thermal Resistance
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Thermal Resistance
Similar to electrical resistance

R =
l

kA
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Thermal Resistance
Similar to electrical resistance

: thermal conductivity

R =
l

kA

k
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Thermal Conductivity of Some Materials
Water: 0.58 W/(mK)

Ice: 2.2 W/(mK)

Concrete: 1-1.5 W/(mK)

Wood:0.12 W/(mK)

Asbestos:0.08 W/(mK)
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Thermal Conductivity of Metals
Aluminum: 205 W/(mK)

Iron: 80 W/(mK)

Copper: 400 W/(mK)

Gold: 310 W/(mK)

Epoxy: 0.35 W/(mK)

Ref
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http://en.wikipedia.org/wiki/List_of_thermal_conductivities


Conduction Heat Loss

P =
ΔT

R

P =
−T2 T1

R
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Convection

Heat transfer on the surface between solids
and liquids (or gaseous)
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Convection
Di�cult to analyze accurately
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Convection
Di�cult to analyze accurately

Two types of Convection:

Natural Convection

Forced Convection
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Types of Flow
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Types of Flow
Laminar FLow

Turbulent Flow

Enhanced heat transfer
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Turbulance
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Heisenberg:
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Heisenberg:

Not Walter White
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Heisenberg

Werner Heisenberg: Key creator of quantum mechanics, uncertainity
principle
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Heisenberg: "I would ask God two questions;
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Heisenberg: "I would ask God two questions;

Why quantum mechanics, and why
turbulence ?"
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Heisenberg: "I would ask God two questions;

Why quantum mechanics, and why
turbulence ?"

I think he will have answer for the �rst one.
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Convection Thermal Resistance

=Rc
1

Ah
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Convection Thermal Resistance

A: Area

=Rc
1

Ah
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Convection Thermal Resistance

A: Area

h: Convection heat transfer coe�cient (W/m2/C)

=Rc
1

Ah
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h: Convection Heat Transfer Coe�cient
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h: Convection Heat Transfer Coe�cient
Depends on the surface properties

Flow Rate, density

Reynolds Number

And others (Nusselt number, prandtl number)
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Rule of Thumbs
Not very accurate but useful for initial calculations

Heat Transfer Coe�cient

Air-Natural Convection: 5-10 W/(m2.C)

Air-Forced Convection: 10-300 W/(m2.C)

Liquid-Forced Convection: 50-20.000 W/(m2.C)
More �nfo: Est�mat�ng Parallel Plate-F�n Heat S�nk Thermal Res�stance, Iterat�ve
calculat�on of the heat transfer coeff�c�
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https://www.electronics-cooling.com/2003/02/estimating-parallel-plate-fin-heat-sink-thermal-resistance/
http://keysan.me/presentations/Iterative%20calculation%20of%20the%20heat%20transfer%20coeffici
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Radiation
Radiant Heaters
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Radiant Heaters
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Re�ective Blankets
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Radiation Heat Loss (Black body radiation)
: radiation heat �ow (W/m2)qR

= ρϵF( − )qR T 4
1 T 4

2
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Radiation Heat Loss (Black body radiation)
: radiation heat �ow (W/m2)

: Stefan-Boltzmann constant (  )

: emissivity of radiating surface (ε ≤ 1)

qR

= ρϵF( − )qR T 4
1 T 4

2

ρ 5.67 W/ /10−8 m2 K 4
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Radiation Heat Loss (Black body radiation)
: radiation heat �ow (W/m2)

: Stefan-Boltzmann constant (  )

: emissivity of radiating surface (ε ≤ 1)

: view factor (≤ 1) – calculated from geometry

qR

= ρϵF( − )qR T 4
1 T 4
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Radiation Heat Loss (Black body radiation)
: radiation heat �ow (W/m2)

: Stefan-Boltzmann constant (  )

: emissivity of radiating surface (ε ≤ 1)

: view factor (≤ 1) – calculated from geometry

 absolute temperature of radiant and ambient (K)

qR

= ρϵF( − )qR T 4
1 T 4

2

ρ 5.67 W/ /10−8 m2 K 4

ϵ

F

,T1 T2
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Radiation Heat Transfer
: heat transfer coe�cient for radiation (for lumped parameter

network)
hR

=hR

ρϵF( − )T 4
1 T 4

2

−T1 T2
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Radiation Heat Transfer
: heat transfer coe�cient for radiation (for lumped parameter

network)

: Stefan-Boltzmann constant=

: emissivity of radiating surface (ε ≤ 1)

: view factor (≤ 1) – calculated from geometry

hR

=hR

ρϵF( − )T 4
1 T 4

2

−T1 T2

ρ 5.67 W/ /10−8 m2 K 4
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Emissivity of Materials
Aluminum:

Black anodized: 0.86

Polished: 0.04-0.1
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Emissivity of Materials
Aluminum:

Black anodized: 0.86

Polished: 0.04-0.1

Radiation is more dominant with naturally cooled heatsinks, than the
ones with forced cooling

More info:

Anod�zed Alum�num Heats�nks: What You Need to Know

How Heat S�nk Anod�zat�on Improves Thermal Performance
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https://www.gabrian.com/anodized-aluminum-heatsinks-what-you-need-to-know/
http://www.qats.com/cms/2010/11/09/how-heat-sink-anondization-improves-thermal-performance-part-1-of-2/
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Who’ll Freeze First? A Puzzle About Size and Staying Warm
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Who’ll Freeze First? A Puzzle About Size and Staying Warm

Size and Metobolism
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http://noticing.co/on-size-and-warmth/
http://noticing.co/on-size-and-metabolism/


(Heat  Volume, but Heat Dissipation  Area)

Square-Cube Law by Prof. Walter Lewin

Square-cube law, small is mighty

∝ ∝
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http://www.youtube.com/watch?v=qoM17ikreio
https://www.youtube.com/watch?v=qzq710aOHjE


(Heat  Volume, but Heat Dissipation  Area)

Small is mighty

∝ ∝
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https://www.youtube.com/watch?v=qoM17ikreio
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Thermal Design in Power Electronics

Determine your components

Calculate the losses

Get the thermal resistances fron datasheet

Determine the max. heatsink thermal resistance

Find a heatsink, decide on cooling type (natural, forced)

Iterate until you get a reasonable operating temp.
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Typical Thermal Circuit
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Typical Thermal Circuit
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Typical Thermal Circuit

Capacitances can be neglected for steady state analysis.

Be careful with low heat capacity (tiny) components
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Design Exercise
IGBT: STGW40H120DF2
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Design Exercise
IGBT: STGW40H120DF2

Find relevant parameters:

Package Type

Junction to Case Thermal Resistance

Junction to Ambient (if used without a heatsink)
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http://www.st.com/resource/en/datasheet/stgw40h120df2.pdf


Design Exercise
IGBT: STGW40H120DF2

Don't forget the freewheeling diode
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http://keysan.me/presentations/www.st.com/resource/en/datasheet/stgw40h120df2.pdf


Choose a Heatsink

How to mount heatsinks?

Useful l�nks:Onl�ne Heat S�nk Calculator, Heat S�nk Calculator, Character�st�cs of
common packages
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https://usermanual.wiki/Pdf/AN416620Heat20Sink20Mounting20Guide.1650589937/pdf
https://www.heatsinkcalculator.com/
https://www.allaboutcircuits.com/tools/heat-sink-calculator/
http://www.giangrandi.ch/electronics/thcalc/thcalc.shtml
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Choose a Heatsink
Suitable for TO-247 Package

R2A-CT4-38E - Heat Sink
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http://www.newark.com/ohmite/r2a-ct4-38e/to-247-heat-sink/dp/73T7839


Choose a Heatsink
Suitable for TO-247 Package

Check:

Heatsink to ambient thermal resistance
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Choose a Heatsink
Suitable for TO-247 Package

Check:

Heatsink to ambient thermal resistance

Thermal resistance vs. air �ow
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How to
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How to
Calculate losses?
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How to
Calculate losses?

Junction temperature
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How to
Calculate losses?

Junction temperature

Maximum operating limit
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Tips & Things to consider
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Tips & Things to consider
Transients operating conditions!

Can be dominant for small (low heat capacity) components
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Tips & Things to consider
Consider air �ow (both for forced and natural cooling)

56 / 69



Tips & Things to consider
Consider air �ow (both for forced and natural cooling)

57 / 69



Tips & Things to consider
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Tips & Things to consider
Ambient Temperature

Not always at 25 C. Check the standards
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Tips & Things to consider
Ambient Temperature

Not always at 25 C. Check the standards

Commercial: 0 ° to 70 °C

Industrial: -40 ° to 85 °C

Military: -55 ° to 125 °C
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Tips & Things to consider

59 / 69



Tips & Things to consider
Non idealities in contact surface
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Tips & Things to consider
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Tips & Things to consider
Imperfections of the contact surface

60 / 69



Tips & Things to consider
Imperfections of the contact surface

That's why we use TIM ( Thermal Interface Material)
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Tips & Things to consider
Thermal Interface Materials

Greases, Putties

(Adhesive) Thermal Pads

Epoxy, Potting compounds

and others
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https://www.digikey.com/eewiki/display/Motley/Thermal+Interface+Materials


Tips & Things to consider
Too much paste does more harm than good

Insu�cient thermal paste
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Tips & Things to consider
Too much paste does more harm than good

Ideal thickness
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Tips & Things to consider
Too much paste does more harm than good

Excessive thermal paste
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Tips & Things to consider
Avoid excessive mounting torque
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Tips & Things to consider
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Tips & Things to consider
Non-uniform cooling

Especially on stacked components on single heatsink
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Useful Readings:
Application notes are your friends
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Useful Readings:
Application notes are your friends

Thermal Resistance Theory and Practice

Thermal resistance of IGBT Modules, Semikron

Thermal e�ects and junction temperature evaluation of Power
MOSFETs

Heatsink Characteristics, IR

Thermal Design of Power Electronic Circuits
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https://www.infineon.com/dgdl/smdpack.pdf?fileId=db3a304330f6860601311905ea1d4599
https://www.semikron.com/dl/service-support/downloads/download/semikron-application-note-thermal-resistances-of-igbt-modules-en-2014-11-30-rev-01/
http://www.st.com/content/ccc/resource/technical/document/application_note/7b/bb/a2/32/f5/9d/46/2f/DM00241971.pdf/files/DM00241971.pdf/jcr:content/translations/en.DM00241971.pdf
https://www.infineon.com/dgdl/an-1057.pdf?fileId=5546d462533600a401535591d3170fbd
https://arxiv.org/pdf/1607.01578.pdf


Useful Readings (cont.):
How to mount heatsinks?

A thermal management example

A Thermal Management Example Part 2:

Thermal Interface Materials

How to select a heatsink
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https://www.eg.bucknell.edu/~dkelley/eceg351/FairchildHeatsinkMountingGuide.pdf
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=68976759
https://www.digikey.com/eewiki/pages/viewpage.action?pageId=71958564
https://www.digikey.com/eewiki/display/Motley/Thermal+Interface+Materials
https://www.cuidevices.com/blog/how-to-select-a-heat-sink


You can download this presentation from:
keysan.me/ee463
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http://keysan.me/ee463

